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Fig. 1. The walk on stars (WoSt) method handles mixed Dirichlet and Neumann boundary conditions, enabling it to model a richer class of problems than
the original walk on spheres (WoS) method. Here for instance we simulate diffusive convective heat transfer from a toaster (Dirichlet) to a piece of bread
(Neumann) by solving a Laplace equation with mixed boundary conditions (top and bottom right), complementing the radiative transfer computed via ray
tracing (bottom left). As with ray tracing, we can simulate directly on the full high-resolution data (bottom center) without generating a volume mesh or forming
a global stiffness matrix. Since results are progressive, we can get a preview of how the toast will look faster than it takes to toast a real piece of bread (top left).

Grid-freeMonte Carlo methods based on thewalk on spheres (WoS) algorithm
solve fundamental partial differential equations (PDEs) like the Poisson equa-

tion without discretizing the problem domain or approximating functions in

a finite basis. Such methods hence avoid aliasing in the solution, and evade

the many challenges of mesh generation. Yet for problems with complex

geometry, practical grid-free methods have been largely limited to basic
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Dirichlet boundary conditions. We introduce the walk on stars (WoSt) algo-
rithm, which solves linear elliptic PDEs with arbitrary mixed Neumann and

Dirichlet boundary conditions. The key insight is that one can efficiently

simulate reflecting Brownian motion (which models Neumann conditions)

by replacing the balls used by WoS with star-shaped domains. We identify

such domains via the closest point on the visibility silhouette, by simply

augmenting a standard bounding volume hierarchy with normal informa-

tion. Overall, WoSt is an easy modification of WoS, and retains the many

attractive features of grid-free Monte Carlo methods such as progressive

and view-dependent evaluation, trivial parallelization, and sublinear scaling

to increasing geometric detail.

CCS Concepts: • Mathematics of computing → Partial differential
equations; Integral equations; Probabilistic algorithms.
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1 INTRODUCTION
Systems throughout nature—and in our everyday lives—exhibit vast

geometric and material complexity (Figures 1, 5). Although Monte

Carlo methods have been enormously successful for photorealistic

rendering, there remains a large divide between our ability to visu-
alize and simulate natural phenomena. To make complex simulation

problems feasible, a common approach is to simplify the original

model, e.g., via coarsening, homogenization, or learning. Yet in many

physical systems, subtle differences in fine-scale geometry have a

major impact on large-scale behavior. Hence, even if the end goal

is to use a lower-dimensional model, one must have tools that can

accurately fit such a model, starting from the original geometry.

More broadly, models of real physical systems must often integrate

disparate phenomena (say, light transport and heat transfer), which

classically demand very different computational tools (Figure 20).

For all these reasons, we tend to shy away from simulating the

natural world at its original level of complexity, either by making

gross approximations—or by tempering our ambition.

Prompted by the disparity between rendering and simulation,

Sawhney and Crane [2020] advocate the use of grid-free Monte Carlo
methods to solve partial differential equations (PDEs) on domains

of extreme geometric complexity. Such methods need not discretize

the problem domain (as in finite difference methods), or even pick

a finite basis of functions (as in finite element and boundary el-

ement methods). Instead, like ray tracing methods, they require

only pointwise access to geometry via closest point queries. This

setup makes grid-free methods especially attractive in simulation

scenarios where solution values or derivatives (e.g., forces) need
only be evaluated at a few key points of interest, rather than densely

over the entire domain. Yet grid-free Monte Carlo methods have

one major shortcoming: since their development in the 1950s, they

have not been extended to many PDEs beyond the original Dirichlet

Laplace problem studied by Muller [1956]. In this paper we take a

basic but important step forward by developing a practical strategy

for incorporating Neumann boundary conditions—which are a basic

component of virtually every real physical model.

Basic Approach. The original WoS method solves Dirichlet prob-

lems by simulating random walks that ultimately get absorbed into

the boundary (Figure 3, top left). Rather than simulate many small

steps of an isotropic Brownian motion (Figure 2), this process is

greatly accelerated by sampling the next point from the largest

empty ball around the current point (Section 3.4). To model Neu-

mann conditions, one must also simulate reflecting random walks

that “bounce” off the boundary (Figure 2, top right & bottom)

refine

[Grebenkov 2006, 2007]. In a half space, reflecting

walks amount to just taking the absolute value

of Brownian motion in one coordinate direction.

Hence, for polyhedral domains, a naïve strategy

for simulating reflections would be to sample the

largest ball that intersects only a single boundary

face, and perform a reflection across the bound-

ary plane if the sampled point falls outside the

domain. However, the efficiency of this strategy

quickly drops as the boundary mesh is refined.

Dirichlet

Neumann

pure Dirichlet (absorbing) pure Neumann (reflecting)

mixed reflecting/absorbing

Fig. 2. A Brownian random walk terminates when it hits an absorbing
Dirichlet boundary �Ω� (top left), but is pushed back into the domain
along the inward normal to a reflecting Neumann boundary �Ω� (bottom).
The walk continues forever if the boundary is only reflecting (top right).

Our strategy, which we call walk on stars (WoSt), is both more

efficient and more general. In short, we identify a large star-shaped

region around the current point, and sample a point on its boundary

by picking a random direction (Figure 3, Section 4). This strategy

can be viewed as a Monte Carlo estimator for the boundary inte-
gral equation (BIE) of a Laplace problem (Section 3). WoSt hence

takes steps that are independent of the level of tessellation, and are

typically much larger than the empty balls used by WoS (Sections

3.4.2 & 6.3). Moreover, this strategy applies to domains that are

not polyhedral, and unlike past WoS-based strategies is not limited

to convex domains (Section 4.4). The only question that must be

answered is: how do we find star-shaped regions? In this paper

we propose one strategy, using the visibility silhouette, which is

easy to implement efficiently without much overhead (Section 5).

Fundamentally, however, the WoSt approach relies only on the use

of star-shaped regions—not on any particular method used to com-

pute them. Importantly, WoSt requires only few modifications to

an existing WoS implementation, and achieves sublinear scaling to

geometric detail using essentially the same data structures asWoS. It

thus provides the same advantages as WoS (progressive evaluation,

trivial parallelization, robustness to defective geometry, etc.), while
being applicable to a broader class of problems.

Limitations. For problems where boundary conditions are mostly

Neumann, WoSt can take very long walks: it must reflect at the

Neumann boundary, and can terminate only on the Dirichlet bound-

ary (Figure 2, bottom). This situation is analogous to path tracing

a scene where all materials have albedo one—such as a room of

perfect mirrors (Figure 22). Likewise, pure Neumann conditions

are uncommon in many real physical scenarios—corresponding to,

e.g., perfect insulators. Support for more general Robin boundary
conditions would hence both improve modeling realism and increase

efficiency, as more walks could terminate early (Section 7). In concur-

rent work, we also present a boundary value caching (BVC) strategy

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.
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pure Dirichlet (absorbing) pure Neumann (reflecting)

mixed reflecting/absorbing

ε-shell

interior point

boundary point

Dirichlet

Neumann

Fig. 3. Top left: Walk on spheres simulates a Brownian random walk inside
an absorbing Dirichlet boundary �Ω� , repeatedly jumping to a random
point on the largest sphere centered at the current walk location. The walk
is terminated when it enters an �-shell �Ω�

�
around the boundary. Top right

and bottom: Our walk on stars algorithm generalizes WoS to domains with
a reflecting Neumann boundary �Ω� , using a sphere that can contain a
subset of the reflecting boundary inside it. The next location of the walk is
determined by intersecting a ray with a randomly-sampled direction against
the sphere and the visible portions of �Ω� it contains, picking the first hit
point. The walk continues forever if the boundary is only reflecting (top
right), and terminates inside �Ω�

�
otherwise (bottom).

that greatly amortizes the cost of long walks, even for Neumann-

dominated problems [Miller et al. 2023]. Here we focus purely on

enriching boundary conditions in grid-free Monte Carlo methods.

WoSt is otherwise limited to the same class of PDEs as WoS—namely

linear elliptic PDEs such as the Poisson equation (Equation 1). How-

ever, boundary integral formulations are readily available for the

Helmholtz equation [Hunter and Pullan 2001, Chapter 3], linear

elasticity [Hunter and Pullan 2001, Chapter 4] and even fluids (via

stochastic integral equations) [Busnello et al. 2005; Rioux-Lavoie

et al. 2022]). We hence expect that WoSt will provide a valuable

starting point for handling more general boundary conditions in

these broader problems.

2 RELATED WORK
We briefly discuss alternative strategies for solving PDEs; Sawhney

and Crane [2020, Sections 1 and 7] and Sawhney et al. [2022, Section

7] describe in depth the tradeoffs between grid-free Monte Carlo

and conventional, discretization-based methods like FEM, BEM, and

meshless FEM, and provide extensive numerical comparisons.

Walk on Spheres. Monte Carlo estimators for linear elliptic PDEs

with Dirichlet boundaries, such as WoS, date back to Muller [1956],

and have recently received renewed interest following their intro-

duction to graphics by Sawhney and Crane [2020]. There have been

rapid advances along two main thrusts: first, increasing efficiency

through optimized implementation [Mossberg 2021], bidirectional

formulations [Qi et al. 2022], and sample caching techniques [Miller

B
EM

W
oS

t

Input boundary conditions Input boundary mesh

Dirichlet
Neumann0

1-1

Input boundary meshInput boundary mesh

Singular matrix
Non-invertible systemB

EM
W

oS
t

Input boundary conditions

Dirichlet1-1

Fig. 4. Finite element technology like BEM suffers from large global errors in
the PDE solution without significantmesh refinement due to local aliasing of
boundary data, and can fail completely on domains with irregular elements
(middle row). In contrast, our method solves PDEs without any aliasing
artifacts irrespective of tesselation quality as it decouples problem inputs
from the boundary representation (bottom row). It can also handle source
terms without requiring a volumetric mesh.

et al. 2023]. Second, increasing generality through new estimators

that can solve PDEs in infinite domains [Nabizadeh et al. 2021] or

with variable coefficients [Sawhney et al. 2022], that simulate fluid

equations [Rioux-Lavoie et al. 2022], and that enable differentia-

bility for inverse problems [Yılmazer et al. 2022]. Our focus is to

further push the envelope along the second thrust by developing

the first Monte Carlo estimator that can solve Neumann and mixed-

boundary problems on general, nonconvex domains while providing

a performance-bias tradeoff comparable to classic WoS.

Grid-based PDE Solvers. Like WoS, WoSt does not require a vol-

ume mesh or background grid—offering critical advantages relative

to grid-based methods such as finite differences and finite element

methods. Namely, grid-free estimators provide output sensitivity

(i.e., the ability to focus computation only on regions of interest), pro-

gressive evaluation (i.e., the ability to preview solutions as they im-

prove), support for general geometric representations (e.g., meshes,

implicit surfaces, or instanced geometry), trivial parallelization, and

excellent scaling with increasing geometric detail. Whereas grid-

based methods are often faster on simple models that can be easily

meshed, WoSt easily handles problems whose real-world complex-

ity places them out of reach for traditional techniques—at least not

without critical sacrifices in accuracy (Figure 5). On the flip side,

grid-based methods can share global information about solution

values (via a coupled linear solve), whereas classic grid-free Monte

Carlo methods must make independent estimates at each point—

leading to fairly redundant computation. As we show in concurrent

work [Miller et al. 2023], information sharing via sample reuse can

dramatically accelerate grid-free methods as well.

Boundary Element Methods. Among grid-based techniques, the

boundary element method (BEM) is most closely related to WoSt,

as it too solves boundary integral equations (Section 3.3). Whereas

grid-free Monte Carlo can solve problems with volumetric data (e.g.,
source terms or variable PDE coefficients), BEM can do so only

when coupled with a secondary solver such as FEM or radial basis

function techniques [Coleman et al. 1991; Hunter and Pullan 2001;

Partridge et al. 2012]. As a result, BEM inherits the shortcomings

of the grid-based approaches discussed above. Even in the absence

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.
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boundary conditions 

Dirichlet Neumann

Fig. 5. Where will oxygen flow at the beginning of a breath? Here we use walk on stars to simulate gas exchange via Laplacian transport [Grebenkov 2006],
directly on a detailed lung model with thin features (center). The output-sensitivity of our method enables us to focus computation purely on the slice planes
used for visualization (right), rather than needing to solve over the whole domain. Attempting simulation on the same model using FEM leads to significant
problems, either because meshing destroys critical details (top left), or takes more than 25 hours to produce a mesh that captures the original geometry
(bottom left). In contrast, walk on stars provides near-immediate feedback that reliably reflects the true geometry and solution.

of volumetric terms, BEM discretizes the domain boundary to con-

struct, then invert, a dense linear system. Hence, computational

complexity scales quadratically with geometric detail, requiring spe-

cialized techniques like hierarchical matrix approximation to scale

to large geometries [Hackbusch 2015]. Finally, BEM must encode

boundary conditions via the discretized boundary representation.

The resulting aliasing can yield global artifacts or singular systems—

and in some cases an inability to even produce a solution (Figure 4).

Monte Carlo Methods for Neumann Problems. Neumann condi-

tions introduce additional complexity into random walk methods

due to the need to reflect, rather than absorb, random walks at the

boundary. Stochastic differential equation (SDE) integrators such as

Euler-Maruyama [Higham 2001] use discretized randomwalks, mod-

eling reflections by projecting walks back into the domain [Costan-

tini et al. 1998]. Such reflections introduce discretization error and

greatly increase walk length (Figure 17), further exacerbating the

challenges already associated with SDE integrators for Dirichlet

problems: a fixed step size means either very slow runtimes (due to

a large number of steps inside the domain) or large estimation bias

(due to discretization error). Unlike SDE integrators, WoS (for pure

Dirichlet problems) and WoSt (for mixed-boundary problems) use

adaptive—and generally large—step sizes, avoid discrete approxima-

tion, and thus offer a much more favorable runtime-to-bias tradeoff

(see Section 6.3 and Sawhney et al. [2022, Section 7.1.3]).

For pure Dirichlet problems, WoSt reduces to the standard WoS

estimator (Section 3.4), i.e., it uses the largest sphere that does not
intersect the boundary. Thus, walks converge quickly to the Dirich-

let boundary, where they are absorbed. For mixed-boundary prob-

lems, augmented WoS methods use finite-difference approximations

of Neumann conditions [Mascagni and Simonov 2004; Maire and

Tanré 2013; Zhou et al. 2017]. However, near the Neumann boundary

sphere sizes become very small, and walks behave much as in SDE

integrators (Figure 6): numerous consecutive reflections result in

slow runtimes (due to long walk lengths) and large estimation bias

(due to accumulation of discretization error). In contrast, WoSt uses

non-spherical, star-shaped regions that can contain large pieces of

the Neumann boundary. UnlikeWoS, it hence continues to take large

steps near the Neumann boundary, while avoiding discretization.

These differences translate into order-of-magnitude improvements

in both runtime performance and estimation accuracy (Section 6.3).

WoSt builds on the techniques of Simonov [2008] and Ermakov

and Sipin [2009], which also sample successive random walk loca-

tions on regions that can contain the Neumann boundary. However,

these techniques are restricted to problems with convex Neumann

boundaries. By sampling walk locations using star-shaped regions

(Section 4.4), WoSt can solve problems on general nonconvex do-

mains, while also being significantly faster for convex ones.

Ding et al. [2022] recently proposed a hybrid WoS-BEM solver to

handle Neumann problems. The hybrid nature of their solver means

that it sacrifices key properties of Monte Carlo-only techniques,

such as progressive evaluation, robustness to poorly tessellated

surface geometry, trivial parallelization, and output sensitivity.

Finally, the walk on boundary (WoB) method is an alternative

Monte Carlo approach for mixed-boundary problems. WoB recur-

sively evaluates single and double layer potentials by tracing rays

that reflect off the boundary [Sabelfeld and Simonov 2013]. Simi-

lar to Simonov [2008] and Ermakov and Sipin [2009], this method

currently works reliably only on problems with convex Neumann

boundaries, suffering from high variance and bias in nonconvex

domains—Section 4.4.1 explains why all three of these methods

struggle with nonconvex domains; see also Section 6.2 for numerical

experiments. In concurrent work, Sugimoto et al. [2023] introduce

WoB to the graphics community—their accessible overview and

improvements to the technique likely open avenues to further, more

efficient estimators that span the space between WoSt and WoB.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.
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Accelerated Distance and Silhouette Queries. Much like path trac-

ing, both WoS and WoSt require iterative applications of a basic

set of geometric queries and sampling operations. WoS uses closest

point queries to the Dirichlet boundary to determine random walk

step sizes. These queries can be accelerated with a bounding vol-

ume hierarchy (BVH) [Intel 2013; Sawhney 2021; Krayer and Müller

2021], achieving sublinear scaling relative to geometric detail. WoSt

additionally uses closest silhouette point queries to the Neumann

boundary to define star-shaped regions. As we show in Section 5,

these queries can likewise be accelerated using a BVH augmented to

include orientation information for the geometry inside each node.

We use the spatialized normal cone hierarchy (SNCH) of Johnson
and Cohen [2001], which has previously been used to accelerate

culling of back-facing geometry, local minimum distance queries,

and next-event estimation (NEE) for rendering scenes with many

lights [Estevez and Kulla 2018]. More recently, silhouette queries

have become a critical subroutine for differentiable Monte Carlo ren-

dering [Li et al. 2018], where they are used to estimate radiometric

integrals arising from visibility discontinuities. Thus, acceleration

schemes for silhouette queries in these emerging rendering algo-

rithms are likely to benefit WoSt, and vice versa.

3 BACKGROUND
We first review linear elliptic PDEs and their boundary integral

equation (BIE) representation, which serves as the starting point for

our WoSt estimator in Section 4. We also demonstrate how to derive

the WoS estimator from the BIE, to aid comparison with WoSt.

3.1 Notation
For any set� ⊂ R� , we use �� and |�| for its boundary and volume,

resp.We use �� to denote a probability density function on �, and

write � ∼ �� for a random point � ∈ � drawn from �� . For any

point � ∈ ��, we use �� for the unit outward normal at �. We say

�� is convex at � if all principal curvatures are positive (relative

to �� ), and nonconvex otherwise. For any point � ∈ �, � (��) �
argmin�∈�� ‖� − � ‖ is the closest point to � on ��, and �(�, � ) is
a ball with center � and radius � . We drop arguments for � and

� when the context is clear. We define the �-shell around �� as

��� � {� ∈ Ω : ‖� − � (��)‖ < �}. Finally, we use Δ for the

negative-semidefinite Laplace operator on R� .

3.2 Linear Elliptic Equations
Linear elliptic partial differential equations have broad utility in

geometry processing, simulation, graphics, and scientific computing

in general. A prototypical example is the Poisson equation

Δ� (�) = � (�) on Ω,
� (�) = �(�) on �Ω� ,
�� (�)
���

= ℎ(�) on �Ω� ,

(1)

which describes, e.g., the steady-state temperature distribution over

a domain Ω ⊂ R� . Here � : Ω → R is the unknown solution, and

� : Ω → R is a source term, analogous to a heat source or sink. We

partition the boundary �Ω into a subset �Ω� where the solution has

Dirichlet boundary conditions, i.e., prescribed values � : �Ω� → R,
and a subset �Ω� where it has Neumann boundary conditions, i.e.,

prescribed derivatives ℎ : �Ω� → R in the normal direction �.

Either subset can be empty, in which case we say the equation has

pure Dirichlet or Neumann conditions. A function � is harmonic if
it satisfies Equation 1 for � = 0, i.e., if Δ� = 0 on Ω.
A screened Poisson equation adds a constant absorption term ��,

� ∈ R>0, modeling a medium that dampens or “cools” the solution:

Δ� (�) − �� (�) = � (�) on Ω, (2)

subject to the same boundary conditions as in Equation 1. One can

form more general linear elliptic equations by adding variable diffu-

sion, drift and absorption coefficients to Equation 2—see Sawhney

et al. [2022, Section 2.2] for a detailed exposition. For simplicity

our exposition focuses on the (screened) Poisson equation, though

much of the material presented here applies to more general linear

PDEs (see Section 7 for further discussion).

3.2.1 Green’s Function. A Green’s function captures the influence

of the source term �—in particular, it describes the solution when

the source is a Dirac delta distribution �� centered at a single point

� ∈ Ω [Evans 1998; Duffy 2015]. For instance, in the case of Equa-

tion 1 the Green’s function �Ω (�,�) is the solution to the Poisson

equation Δ� (�) = �� (�). In general, a Green’s function will depend

on the shape of the domain Ω and the choice of boundary condi-

tions. Typically, Green’s functions are not available in closed-form—

however, explicit expressions are available for important special

cases, e.g., the free-space Green’s function �R
�
on Ω = R� , and the

Green’s function ��
for a ball Ω = � with zero-Dirichlet boundary

conditions (see Appendix A.1). The WoS and WoSt methods effec-

tively provide a bridge between closed-form Green’s functions on

special domains, and solutions to PDEs on more general domains.

3.2.2 Poisson Kernel. The Poisson kernel likewise captures the in-
fluence of the boundary conditions on the solution, e.g., when the

function� is a Dirac delta distribution �� centered on a single bound-

ary point � ∈ �Ω. At any point � ∈ Ω with associated normal �� , it

can be expressed as the normal derivative of a Green’s function:


Ω (�,�) � ��Ω (�,�)
���

. (3)

As with Green’s functions, common Poisson kernels are known

explicitly in free space and for a ball (see Appendix A.2).

3.3 Boundary Integral Equation
The solution � to a linear PDE can be expressed via a boundary
integral involving the associated Green’s function and Poisson ker-

nel. Assume for now that Ω is a watertight domain with smooth

boundary �Ω, and let � be an evaluation point on the interior of

Ω. We first multiply the Poisson equation in Equation 1 with its

Green’s function �Ω
and integrate over Ω to get

0 =
∫
Ω
�Ω (�,�) Δ� (�) d� −

∫
Ω
�Ω (�,�) � (�) d�. (4)

Applying integration by parts to the first integral, we have

0 =
∫
�Ω

�Ω (�, �) �� (�)
���

d� −
∫
Ω
∇�Ω (�,�) · ∇� (�) d�

−
∫
Ω
�Ω (�,�) � (�) d�. (5)
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Applying integration by parts again to the second integral in Equa-

tion 5 and rearranging terms then yields∫
Ω
� (�) Δ�Ω (�,�) d� =

∫
�Ω


Ω (�, �) � (�) − �Ω (�, �) �� (�)
���

d�

+
∫
Ω
�Ω (�,�) � (�) d�. (6)

From the definition Δ�Ω (�,�) = �Ω� (�) we arrive at

� (�) =
∫
�Ω


Ω (�, �) � (�) − �Ω (�, �) �� (�)
���

d�

+
∫
Ω
�Ω (�,�) � (�) d�. (7)

This equation determines the solution � at � entirely through the

solution values � (�) and normal derivatives �� (�)/��� on the bound-

ary �Ω, and the source values � (�) inside the domain Ω. From
Equation 1, the Dirichlet and Neumann parts of the boundary have

prescribed values � and ℎ, resp., while � is specified inside the do-

main. To use Equation 7, we must then determine unknown solution

values � (�) on the Neumann boundary �Ω� , and unknown deriva-

tive values �� (�)/��� on the Dirichlet boundary �Ω� .

3.3.1 General Setting. In practice, Equation 7 cannot be used di-

rectly since the Green’s function and Poisson kernel for an arbitrary

domain Ω are unknown. Fortunately, this equation can be general-

ized to the boundary integral equation (BIE) [Costabel 1987, Section

2] where these functions are no longer tied to the domain Ω. Instead
one may use, e.g., the closed-form Green’s function and Poisson

kernel for a ball, or for R� . Moreover, while we ultimately seek a

solution on Ω, the BIE applies to arbitrary subdomains in Ω:

Boundary Integral Eqation

For any two sets �,� ⊂ Ω, and for any point � ∈ R� , the

solution to the Poisson equation in Equation 1 satisfies:


 (�) � (�) =

boundary∫
��


� (�, �) � (�) − �� (�, �) �� (�)
���

d�

+

interior∫
�

�� (�,�) � (�) d� , (8)

where


 (�) �




1, � ∈ �,

1/2, � ∈ ��,

0, � ∉ �.

(9)

Hunter and Pullan [2001, Chapter 3.3] provide a derivation. For

screened Poisson equations we instead use the Green’s function

and Poisson kernel from Appendix A.2. The BIE can be extended

further—for instance, if �� is a non-smooth curve in the plane,

then 
 = 1 − 	/2� at a corner with interior angle 	 . Likewise,

in Appendix B we generalize the BIE to double-sided boundary

conditions. To keep things simple, we will assume in Section 4 that

�� is smooth, letting 
 = 1/2 at all boundary points.

Both BEM and WoS can be interpreted as methods for solving the

BIE, for different choices of sets � and � . Throughout we highlight

boundary terms (in blue) and interior terms (in gray) to make the

correspondence with Equation 8 clear.

3.3.2 Boundary Element Method. BEM integrates Equation 8 over

the PDE domain (� = Ω) using free-space kernels (� = R� ). BEM

does not directly support source terms � , leading to the integral


 (�) � (�) =

boundary∫
�Ω


R
�

(�, �) � (�) − �R
�

(�, �) �� (�)
���

d� . (10)

To determine the unknown data � on �Ω� and ��/�� on �Ω� , BEM

uses a finite basis of functions (associated with mesh nodes on a

discretized boundary) to solve a dense linear system—resulting in

the tradeoffs discussed in Section 2.

3.3.3 Walk on Spheres. WoS instead integrates the BIE over a ball

�(�, � ) ⊂ Ω centered at � , adopting kernels from the ball (� = � =
�(�, � )). At points � ∈ ��, these kernels simplify to �� (�, �) = 0

and 
� (�, �) = 1/|�� | (Appendix A.1), yielding an integral

� (�) =

boundary

1

|��(�, � ) |

∫
�� (�,� )

� (�) d� +

interior∫
� (�,� )

�� (�,�) � (�) d� . (11)

This setup greatly simplifies the BIE by eliminating dependence on

��/�� (hence avoiding the need for any branching estimates). Unlike

BEM, the source term � is accounted for, and one does not need

to discretize the domain boundary �Ω nor solve a global system of

equations. Instead, the solution is evaluated by recursively using

Equation 11 to estimate � (�) on the ball boundary ��, leading to

the WoS algorithm (Section 3.4.2).

3.4 Walk on Spheres Estimator
WoS is a Monte Carlo estimator for Equation 11, which means that

it approximates the boundary and interior integrals using random

samples of the integrands. WoSt follows the same basic recipe, but

for a different version of the BIE. Before discussing these estimators

in detail, we first review Monte Carlo integration [Fishman 2006],

which is the numerical foundation for both methods.

3.4.1 Monte Carlo Integration. For an �1-integrable function � :

� → R, the Monte Carlo method approximates the integral

� �

∫
�

� (�) d� (12)

using the sum

�̂� �
1

�

�∑
�=1

� (��)
�� (��)

, �� ∼ ��, (13)

where �� are independent samples randomly drawn from a proba-

bility density �� that is nonzero on the support of � . An estimator

is unbiased if its expected value equals the true value, E[�̂� ] = � .

We can quantify the accuracy of an estimator using its expected

squared error E[(�̂� − � )2], which for an unbiased estimator equals

its variance Var[�̂� ] � E[(�̂� − E[�̂� ])2]. Assuming independent
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samples �� , variance goes to zero at a rate� (1/� ) [Pharr et al. 2016,
Chapter 13]. We express all estimators in this paper as single-sample
estimates �̂ , dropping the subscript � = 1 for brevity. Averaging

these estimates over many trials improves accuracy.

3.4.2 WoS Estimator. A recursive single-sample estimate for Equa-

tion 11 at a point �� ∈ Ω is given by

�̂ (�� )�

boundary

1

|��(�� ) |
�̂ (��+1)

��� (�� ) (��+1)
+

interior

�� (�� ) (�� , ��+1) � (��+1)
�� (�� ) (��+1)

, (14)

where ��+1 ∈ �� and ��+1 ∈ � are sampled from probability

densities ��� and �� , resp. Typical choices are the uniform den-

sity ��� � 1/|�� |, and the normalized Green’s function �� �

�� (�� , ��+1)/|�� (�� ) |, where |�� (�� ) | is the integral of ��
over

�(�� ) (see Appendix A and Sawhney and Crane [2020, Section 4.2]).

Recursive evaluation of Equation 14 determines a random walk on

the points �0 → �1 → . . . , where each point �� sits on a sphere

centered at the previous point ��−1—hence the namewalk on spheres
(Figure 3). This walk terminates if � (�� ) is known; otherwise, the
process repeats. To take big steps, WoS typically uses the largest

sphere centered at �� and contained entirely in Ω (i.e., � = ‖� − � ‖).

3.4.3 Boundary Conditions for WoS. How a walk terminates de-

pends on the particular boundary conditions, enumerated below.

Pure Dirichlet Conditions. For pure Dirich-
let conditions (�Ω = �Ω� ), walks terminate

in the �-shell �Ω�
�
and the solution estimate

is set to the boundary value � at the closest

point �� , i.e., �̂ (�� ) � �(�� ). Terminating

walks in the shell introduces negligible bias of

order� (1/log �) [Binder and Braverman 2012];

Sawhney and Crane [2020, Figure 14] show experimentally that

shrinking � has little impact on runtime cost. WoSt likewise uses

an �-shell to absorb walks near the Dirichlet boundary, reducing to

WoS for pure Dirichlet problems.

MixedDirichlet-NeumannConditions. The standardWoS approach

for mixed boundary problems [Mascagni and Simonov 2004] also

performs a random walk as above, again terminating on �Ω�
�
. If

the walk ever reaches a point �̃� in the �-shell �Ω�
�

around the

Neumann boundary, then the Neumann value ℎ at the closest point

�� ∈ �Ω� is approximated via finite differences, e.g.,

ℎ(�� ) ≈
� (�� + ���� ) − � (�� )

�
, (15)

where � > � is a constant. The solution estimate at �� is then

�̂ (�� ) � �̂ (�� + ���� ) − �ℎ(�� ) ≈ � (�� ). (16)

In other words, −�ℎ(�� ) is added to the running estimate, and

the walk continues as usual from the point �� + ���� obtained by

nudging �� back into the domain by a fixed distance � along the

inward unit normal (Figure 6, top). Mascagni and Simonov [2004]

call this procedure a boundary reflection; Maire and Tanré [2013]

and Zhou et al. [2017] provide more sophisticated approximations

using higher-order differences.

ε-shell

nudge into domain

Fig. 6. To simulate reflecting random walks with WoS, a standard approach
[Mascagni and Simonov 2004; Maire and Tanré 2013] is to offset a walk
that approaches the Neumann boundary back into the domain by a fixed
distance along the inward normal � to the boundary (top). This approach
introduces discretization error into the reflecting walk simulation. Moreover,
the resulting walks have a tendency to cling to the boundary as they are
naturally attracted to it, leading to long walk lengths (bottom).

Unfortunately, such reflections are often impractical for prob-

lems with a large Neumann boundary �Ω� : the finite difference

approximation introduces significant bias if � is much larger than

�–yet if � is only slightly larger than �, random walks “stick” to

�Ω�
�
, taking many small steps before escaping toward the interior

(Figure 6, bottom). Figure 16 shows that, in practice, boundary re-

flections yield both slow runtime and large accumulated bias. WoSt

avoids these issues by considering larger spheres that contain the

Neumann boundary (Section 4), greatly improving both accuracy

and efficiency.

Pure Neumann Conditions. The solution to a Poisson equation

with pure Neumann boundary conditions is determined only up to

an additive constant. From the random walk perspective, there is no

Dirichlet boundary to terminate on, hence contributions from ℎ and

� accumulate forever. However, shorter walks tend to resolve high-

frequency details in the solution, whereas the contribution from

independent longer walks is more spatially uniform (see Figure 18).

Based on this observation, Maire and Tanré [2013] describe a WoS

estimator that stops the simulation once walks become longer than

a certain length, pinning an additive constant to the solution. For

WoSt we instead apply Tikhonov regularization, which makes the

solution unique by adding a small absorption term �� to the PDE

(resulting in a screened Poisson equation). In particular, we switch

to this PDE when a walk gets longer than a user-specified length

(Figure 19), which adds a small but controlled amount of bias. We

then terminate walks via Russian roulette [Pharr et al. 2016, Section
13.7], using a termination probability proportional to the Poisson

kernel of a screened Poisson equation (Equation 39).
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4 THE WALK ON STARS ALGORITHM
In this section, we developwalk on stars (WoSt), a recursive estimator

for mixed boundary-value problems like Equation 1. LikeWoS,WoSt

takes large steps inside the domain Ω to quickly reach the Dirichlet

boundary—yet unlike WoS, WoSt can also take large steps near the

Neumann boundary without incurring large bias. Our method is

still entirely grid-free, i.e., neither Ω nor �Ω has to be discretized;

we need only query the boundary geometry �Ω via ray intersec-

tions and modified distance queries (Section 5). Here we assume for

simplicity that the domain Ω is a compact subset of R� ; see Appen-

dix B for extensions to open domains and double-sided boundary

conditions. Detailed pseudocode is provided in Algorithm 1.

4.1 Star-Shaped Subdomains
In lieu of balls, WoSt considers regions

that are star-shaped with respect to a

point � [Hansen et al. 2020]: any ray cast

from � must intersect the region boundary

only once. Though in principle any star-

shaped subdomain could be used, we use

regions St(�, � ) given by the component of

�(�, � ) ∩ Ω containing � , for a particular

choice of ball � (see Section 4.4.2). Similar

to Equation 1, we partition the region boundary into a Neumann part

�St� � �Ω� ∩ �St with prescribed normal derivatives ��/�� = ℎ

from Equation 1, and a spherical part �St� � �� ∩ �St (see inset).

4.2 Boundary Integral Formulation
Letting � � St and � � � in Equation 8, the BIE becomes


 (�)� (�) =

boundary∫
�St(�,� )


� (�, �) � (�) −
∫
�St� (�,� )

�� (�, �) ℎ(�) d�

+

interior∫
St(�,� )
�� (�,�) � (�) d� . (17)

As with the BIE for WoS (Equation 11), the solution value � (�) is
the only unknown in this equation: at points � ∈ �St� the normal

derivative ��/�� is given by the fixed Neumann data along �Ω, and
is not needed at points � ∈ �St� , where�

� (�, �) = 0. Since only one

quantity is unknown, estimators for this equation need not branch.

Simonov [2008], and later Ermakov and Sipin [2009], take a par-

allel approach on domains Ω with convex Neumann boundaries

�Ω� . In particular, they use regions formed by intersecting Ω with

a ball � whose radius is the distance to the Dirichlet boundary,

�
Dirichlet

� ‖� − � (�Ω� )‖. Hence, � can contain a subset of the

Neumann boundary �Ω� . In the convex case, such regions are au-

tomatically star-shaped. To handle arbitrary domains, WoSt instead

uses visibility information to obtain star-shaped regions even near

nonconvex Neumann boundaries (which in general can yield a ra-

dius � ≤ �
Dirichlet

), as we will see in Section 4.4.2.

4.3 The WoSt Estimator

Walk on Stars Estimator

A recursive single-sample estimator for Equation 17 is given by

�̂ (�� ) �

boundary


� (�� , ��+1) �̂ (��+1)

 (�� ) ��St(�� ,� )(��+1)

− �� (�� , ��+1) ℎ(��+1)

 (�� ) ��St� (�� ,� )(��+1)

+

interior

�� (�� , ��+1) � (��+1)

 (�� ) �St(�� ,� ) (��+1)

, (18)

where

• the points ��+1 ∈ �St, ��+1 ∈ �St� , and ��+1 ∈ St are

sampled from the probability densities ��St (Section 4.4),

��St� (Section 4.5), and �St (Section 4.6), resp.
• � is chosen so that St(�� , � ) is star-shaped (Section 4.4).

At a high level, each step of WoSt accumulates contributions

from the Neumann data ℎ and source term � . For mixed Dirichlet-

Neumann problems, the walk terminates in �Ω�
�
, using the Dirichlet

data � as the solution estimate, i.e., �̂ (�� ) � �(�� (�Ω� )). For pure
Dirichlet problems, WoSt reduces to WoS; for pure Neumann prob-

lems we apply Tikhonov regularization (Section 3.4.2). We first

discuss how to sample the next step ��+1 (Section 4.4), followed by

sampling procedures for ℎ and � (Sections 4.5, 4.6).

4.4 Random Walk on Star-Shaped Regions
The next walk location is importance sampled from the Poisson

kernel for a ball centered at the current point �� , i.e., ��+1 ∼ ��St =

� (�� , ��+1). For a Poisson equation in R3, this kernel is given by


�
3D

(�� , ��+1) =
���+1 · (��+1 − �� )
4� ‖��+1 − �� ‖3

. (19)

We can use the same sampling density for a screened Poisson equa-

tion, since its corresponding kernel simply multiplies 
� by a con-

stant in [0, 1) determined by the absorption coefficient (Equation 39).

Equation 19 coincides with the signed solid angle subtended by

�St at ��+1 with respect to �� [Barill et al. 2018; Feng et al. 2023].

In rendering, this term appears in the light transport equation (LTE)
[Pharr et al. 2016, Equation 14.15]. Unlike the BIE, the LTEmultiplies


� with a binary visibility � (�,�) that equals 1 if � and � are mutu-

ally visible. Visibility ensures the product � (�� , �) 
� (�� ,� ) (�� , �)
is nonnegative: positive if � is visible from �� ; zero otherwise.

Through a change of variables, this product can be importance

sampled via directional sampling, i.e., cast a ray from �� in a di-

rection � ∼ �S
�−1 (�) = 1/|S�−1 | uniformly sampled from the unit

sphere, and find its first intersection with �St:

��+1 � �� + ���, �� � min{� ∈ [0, +∞) : �� +�� ∈ �St(�� , � )} . (20)

We refer to Veach and Guibas [1995b] for details on the relationship

between area sampling and directional sampling.
1

1
If �� lies on the boundary, then the ray origin should be offset slightly along the

inward boundary normal to avoid self-intersections; see Wächter and Binder [2019].

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.



Walk on Stars: A Grid-Free Monte Carlo Method for PDEs with Neumann Boundary Conditions • 1:9

walk on stars
(single intersection)

naive estimator
(multiple intersections)

Fig. 7. Left: For a ball � (�� , � ) whose radius � is the distance to the Dirichlet
boundary �Ω� , the solution to a Poisson equation has to be estimated at all
ray intersections, sampled proportional to signed solid angle. Right: WoSt
instead restricts � ∩ Ω to be star-shaped relative to �� to avoid more than
one intersection, estimating the PDE solution at the first intersection point
��+1 on either �� inside Ω, or the Neumann boundary �Ω� inside �.

4.4.1 Non-Visible Regions. Since Brownian motion can effectively

“walk around corners” (Figure 2), the BIE has no visibility term.

Hence, the solution value at �� can depend on non-visible points

��+1, complicating use of directional sampling. In particular, if the

subdomain around �� is nonconvex, then a naïve strategy is to es-

timate ��+1 at all intersections along a ray from �� (Figure 7, left),
yielding a branching walk that increases in size exponentially. One

could instead use just a single randomly selected intersection, but

this approach yields extremely high variance (see Figure 14), for two

reasons. First, the recursive solution estimate must be multiplied by

the number of intersections to account for the expected contribution

from each intersection, causing a blowup in value as walk length

increases. Second, the Poisson kernel alternates sign along consec-

utive intersection points along a ray, yielding unstable estimates

due to cancellation [Kalos and Whitlock 2009, Chapter 4].
2
These

issues are also the root cause of high variance and bias in the walk

on boundary method [Sabelfeld and Simonov 2013; Sugimoto et al.

2023]. Moreover, using just the first intersection leads to a biased

estimator, as we explain in Appendix C.

4.4.2 Sampling Star-Shaped Regions. To avoid these issues, some

past work assumes the entire Neumann boundary �Ω� is convex

[Simonov 2008; Ermakov and Sipin 2009], yielding only one inter-

section for any subdomain �(�� , � ) ∩ Ω where � � �
Dirichlet

. This

assumption of course limits the applicability of such estimators.

We instead let � be the minimum of the distance �
Dirichlet

to

the Dirichlet boundary, and the distance �
silhouette

to the closest

point on the visibility silhouette of �Ω� (Section 5). The connected

component of �(�� , � ) ∩Ω containing �� then defines a star-shaped

region St(�� , � ). Figure 8 shows several examples. We can thus

sample points on the region boundary �St by simply taking the first

point along a ray from �� that intersects either ��(�� , � ) or �Ω.

2
One might overcome these issues by decomposing the BIE into independent integrals—

each with a Poisson kernel that is entirely positive or negative—then randomly select

one integral for sampling in proportion to the area over which it is integrated. Unfortu-

nately, it is unclear how to efficiently perform such a decomposition.

Fig. 8. We use star-shaped regions defined by intersecting a ball � (�� , � )
with the domain Ω and taking the component connected to �� . The ball
does not contain the Dirichlet boundary �Ω� : only visible parts of the
Neumann boundary �Ω� and the spherical part of ��.

The use of star-shaped subdomains suggests the name walk on
stars, in analogy with walk on spheres. Like the original WoS algo-

rithm (and unlike the reflections in Figure 6) WoSt can take large

steps when far from the Dirichlet boundary, using small steps mainly

near termination. Though other star-shaped sets could be also used,

our approach is motivated by the fact that the closest silhouette

point is quite easy to compute—as will be discussed in Section 5.

4.4.3 Minimum Radius for Star-Shaped Regions. Near concave parts
of the Neumann boundary, the distance to the closest silhouette

point on �Ω� shrinks to zero (Figure 9), stalling the progress of

randomwalks. We hence limit the radius � used to define St(�� , � ) to
a user-defined value �min

, but still use only the first ray intersection

to sample the next point ��+1. This scheme incurs a small amount

of bias when St is not star-shaped, since we effectively assume the

solution � is zero on any piece of �St not visible from �� (Figure 10,

left)—Appendix C provides further discussion. As with the parame-

ter � for the Dirichlet �-shell �Ω�
�
, a smaller �min

value reduces bias

near concave regions of �Ω� at the expense of performance. We

study this performance-bias tradeoff in Section 6.1. In practice our

star-shaped regions tend to be much larger than �min
, even slightly

away from a concave boundary.

Fig. 9. The distance � to the visibility silhouette shrinks as a query point
approaches a concave region on �Ω� .
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Algorithm 1 WalkOnStars(�, �� , onNeumann, �, �min)
Input: A point � , the normal �� at � (undefined if � ∉ �Ω� ), a

flag onNeumann indicating whether � ∈ �Ω� , a termination

parameter �, and a minimum radius �min
.

Output: A single-sample WoSt estimate �̂ (�) for Equation 1.

1: ⊲ Compute distance to �Ω� , or∞ if �Ω� = ∅ ⊲Section 5
2: �

Dirichlet
, � ← DistanceDirichlet(�)

3: ⊲ Return boundary value � at � if � ∈ �Ω�
�

4: if �
Dirichlet

< � then return �(�)
5: ⊲ Compute distance to the visibility silhouette of �Ω� (Alg. 2)

6: �
silhouette

← SilhouetteDistanceNeumann(�, �
Dirichlet

)
7: ⊲ Compute radius for star-shaped region St(�)
8: � ← max(�min,min(�

Dirichlet
, �

silhouette
))

9: ⊲ Uniformly sample a direction � on the unit sphere

10: � ← SampleUnitSphere()

11: ⊲ If � ∈ �Ω� , sample � from hemisphere w/ axis −�� (Sec. 4.4.4)

12: if onNeumann and �� · � > 0 then � ← −�
13: ⊲ Intersect ray � + �� w/ Neumann part �St� , and get first hit

14: didIntersectNeumann, �, �� ← IntersectNeumann(�, �, � )
15: ⊲ If there is no hit, intersect spherical part �St� instead

16: if not didIntersectNeumann then � ← � + � �

17: ⊲ Compute single-sample Neumann contribution

18: �, �� , pdf� ← NeumannBoundarySample(�, � ) ⊲Alg. 5
19: isValid ← pdf� > 0 and ‖� − � ‖ < � and ⊲Section 4.5
20: not IntersectNeumann(�, � − �, 1 − 1e-6)
21: 
 ← onNeumann ? 1/2 : 1

22: �̂ ← isValid ? �� (�,� ) (�, �) ℎ(�) / 
 pdf� : 0

23: ⊲ Compute single-sample source contribution

24: �source ∼ �� (�,� ) (�, �)/|�� (�,� ) (�) | ⊲Sec. 5.2
25: � ← � + �source � ⊲Reuse � for source sample
26: �̂ ← ‖�−� ‖< ‖�−� ‖ ? |�� (�, � ) | � (�) : 0 ⊲� = 0 if � ∉ St(�)
27: ⊲ Update walk position and normal

28: �, �� ← �, �� ⊲�� is undefined if � ∉ �Ω�

29: onNeumann ← didIntersectNeumann
30: return WalkOnStars(�, �� , onNeumann, �, �min) − �̂ + �̂

4.4.4 Hemispherical Sampling on
the Neumann Boundary. When ��
lies on �Ω� , sampling � from the

unit sphere can yield points ��+1
outside Ω (see inset). Here we

instead sample � from the hemi-

sphere around ��� . This scheme

effectively invokes the reflection principle of Brownian motion,

across the halfplane at the base of the hemisphere [Jacobs 2010]. A

useful consequence is that the 
 (�� ) = 1/2 in the denominator of

the first term in Equation 18 is canceled by the factor 1/2 we get
from sampling a hemisphere rather than a sphere, preventing our

recursive estimator from picking up a multiplicative factor of two

each time a walk reaches �Ω� . Note that if �Ω� is concave at �� ,

we again incur a small amount of bias (Figure 10, right).

visible from xk
(no bias)

hidden from xk
(not sampled)

Fig. 10. WoSt uses balls with radius no smaller than �min to prevent walks
from stopping near concave Neumann boundaries. Left: We only sample
parts of �Ω� directly visible to �� inside any ball � (�� , �min) , implicitly
assuming the function � is zero elsewhere. Right: Hemispherical boundary
sampling ensures the next walk location ��+1 does not leave the domain,
but incurs a small bias in �̂ when �� lies on a concave boundary.

4.5 Sampling Neumann Boundary Conditions
For problems with nonzero Neumann conditions, we must evaluate

the second term in Equation 18. To do so, we sample a point ��+1
uniformly on the Neumann boundary �Ω� , adding a contribution

ℎ(��+1) only if ��+1 is also contained in �St� . (Appendix D explains

why this term is not estimated using the next location ��+1.) This
estimate remains unbiased, since we effectively integrate the same

function (ℎ restricted to �St� ) over a larger domain. Sampling the

entire Neumann boundary leads to high variance in the estimator,

as most samples will not lie on �St� . Likewise, rejection sampling is

prohibitively expensive since �St� can be much smaller than �Ω� .

In Section 5.2, we hence describe a strategy for efficiently generating

samples ��+1 close to �� , which significantly reduces variance.

4.6 Sampling the Source Term
Finally, we sample a point ��+1 ∈ �(�� , � ) to estimate the interior

integral in Equation 18 (Algorithm 1, lines 24-27). We reuse the

ray direction � we sampled to gener-

ate ��+1 (Equation 20), and set ��+1 �
�� + �source� , where we sample the dis-

tance �source ∼ � (�source) ∝ �� (�� , �� +
�source�). If the sampled distance �source
is greater than the distance �� �
‖��+1 − �� ‖, then the point ��+1 is out-
side the star-shaped region St(�� , � ), and
we reject it (see inset). As in Section 4.4.4, (re)using a hemispherical

direction cancels 
 (�� ) = 1/2 when �� ∈ �Ω� .

4.7 Final Estimator
Our final WoSt estimator is defined recursively as:

�̂ (�� ) �
{
�(�� ), �� ∈ �Ω�

�
,

�̂ (��+1) − �̂ + �̂ otherwise,
(21)

where the next walk location ��+1 in Ω or on �Ω� is sampled using

the procedure in Section 4.4, and the non-recursive Neumann and

source contributions �̂ and �̂ are provided in Algorithm 1, lines

23 and 27, resp. This estimator maintains the general structure of a

WoS estimator, and thus introduces little implementation overhead.
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5 GEOMETRIC QUERIES
In general, WoSt works with any boundary representation that

supports the following queries:

Q.1 closest point queries to �Ω� ,

Q.2 closest silhouette point queries to �Ω� ,

Q.3 ray intersection queries against �Ω� , and

Q.4 point sampling queries on �Ω� .

Since none of these queries require the boundary to have a well-

defined inside/outside, it need not bewatertight, and can have cracks,

holes, or self-intersections—see in particular Appendix B for a dis-

cussion of open domains and double-sided boundary conditions.

In principle, queries Q.1–Q.4 could be evaluated for, say, spline

patches or implicit surfaces (Section 7); we focus exclusively on

triangle meshes. In particular, both Q.1 and Q.3 use standard closest
point and ray intersection algorithms (not detailed here); Sections

5.1 and 5.2 describe closest silhouette point queries (Q.2) and point

sampling queries (Q.4), resp. All queries use a bounding volume hier-
archy (BVH) to achieve amortized sublinear scaling in the number

of triangles; our basic approach is to add normal information to

the BVH already used by WoS [Sawhney and Crane 2020, Section

5.1]. In particular, we build a standard BVH to perform closest point

queries to the Dirichlet boundary (Q.1), and a separate SNCH (Sec-

tion 5.1) for all queries of the Neumann boundary (Q.2-Q.4), using
normal information only for Q.2. In practice, all queries needed

to implement WoSt on triangle meshes are supported by the FCPW
library of Sawhney [2021]; see also Appendix E for pseudocode.

5.1 Closest Silhouette Point Queries
The silhouette of a triangle mesh relative to a given direction �

occurs along a set of edges � that satisfy a local silhouette condition.

In particular, � is a silhouette edge if for each distinct pair of triangles

containing � ,

(� · �1) · (� · �2) ≤ 0, (22)

not silhoue�e

silhoue�e

ee e

e e

where �1, �2 are consistently oriented

normals (see inset). Note in particular

that every boundary edge is a silhou-

ette edge. In WoSt, � is the direction

from the current walk location � to its

closest point on � . A naïve strategy for

finding the closest silhouette edge is to

use a BVH to locate the closest point

to � on all edges, skipping edges not contained in the silhouette.

However, this strategy is highly inefficient when BVH nodes contain

large, finely-tessellated regions that are all front- or back-facing

(Figure 11): here each edge is examined (and rejected) exhaustively,

whereas ideally the whole node should simply be culled.

5.1.1 Spatialized Normal Cone Hierarchy. To improve scaling, we

hence augment our BVH with information about the orientation of

the geometry inside each node. In particular, we adopt the spatial-
ized normal cone hierarchy (SNCH) of Johnson and Cohen [2001].

Each node of a SNHC stores not only an axis-aligned bounding box

(AABB), but also a normal cone. The cone axis is the average normal

of all triangles in the node, and the cone half angle 	 is the maximum

query
point

n

n
n

silhoue�e points

front-facing geometry

back-facing geometry

Fig. 11. An optimized procedure for finding silhouettes should avoid visiting
finely-tessellated geometry that is entirely front- or back-facing relative to
the query point.

angle between the axis and any triangle normal (Figure 12). Normal

cones can be assembled during BVH construction. We currently use

the surface area heuristic (SAH) [Wald 2007]; performance could be

further improved via the surface area orientation heuristic (SAOH)
of Estevez and Kulla [2018, Section 4.4], which clusters primitives

according to both proximity and alignment.

5.1.2 Closest Silhouette Point Traversal. To perform a silhouette

query, we traverse the SNCH in depth-first order (Algorithm 2). For

each node N in this traversal we build a view cone rooted at � . The

cone’s axis points toward the center of N, and its half-angle tightly

bounds the AABB (Figure 12); we then check if the view cone and the

node’s normal cone contain a pair of mutually orthogonal directions.

If this test fails, all triangles in N must be front- or back-facing

relative to the query point, and it can be skipped. In the context

of WoSt, an upper bound on the size of a star-shaped region St(�)
is given by the distance �

Dirichlet
from � to the Dirichlet boundary

(Section 4.4.2). To further improve query efficiency we can hence

restrict the search to the radius �max = �
Dirichlet

.

5.2 Point SamplingQueries
Recall that for problems with nonzero Neumann conditions, we

sample points from �Ω� (Section 4.5). To increase the likelihood

that these points lie on �St� (�), we adopt a hierarchical importance

view
cone

normal cone

query 
point

SNCH
node

view
cone

SNCH
node

Fig. 12. A SNCH tests for a pair of mutually orthogonal directions in a view
cone and a node’s normal cone to determine whether the node contains a
silhouette edge. The geometry inside the node can be skipped if no such
pair of directions is found.
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Fig. 13. Much like the parameter for the �-shell, WoSt introduces an �min

parameter to help walks make progress near concave parts of the Neumann
boundary. Walks generally converge faster with larger values for �min, with
run-time improvements outweighing the relative increase in bias.

sampling strategy used in rendering to accelerate next-event esti-

mation [Estevez and Kulla 2018]. In particular, during each step of

BVH traversal we select only a single random child whose AABB

intersects St(�). To give preference to nodes closer to the query

point � , we sample according to the free-space Green’s function

�R
�
(Algorithm 5, lines 12-27), rather than the Green’s function

for a ball (which becomes negative outside St(�)). Once we reach a

leaf node, we uniformly sample a point from the leaf triangles with

respect to surface area (see Algorithm 6, lines 2–9 and Algorithm 5,

line 6–10). This point is not guaranteed to lie on �St� , but is much

more likely to do so compared to uniformly sampling all of �Ω� .

Estevez and Kulla [2018, Section 5.4] describe further improvements

to this traversal strategy.

6 EVALUATION
In this section, we discuss practical considerations relating to our

WoSt estimator such as stopping tolerances, and use several syn-

thetic tests to evaluate its effectiveness. We use a multicore CPU-

based implementation, and achieve essentially linear scaling; unless

otherwise noted, all experiments used a 64-core 3rd Generation Intel

Xeon workstation. As seen in, e.g., Figure 5 (left) and discussed by

Sawhney and Crane [2020, Section 7.5], the preprocessing cost of

building a BVH is typically not significant (on the order of seconds),

especially in contrast to finite element mesh generation (on the

order of minutes to hours). Test problems are encoded much like

a scene in a photorealistic renderer [Pharr et al. 2016], e.g., using
meshes or other boundary representations to describe �Ω, and call-

back functions to encode the functions � , �, and ℎ in Equation 1.

See Sawhney and Crane [2020, Section 5] for further discussion.

WoSt

Neumann
Dirichlet

multiple intersections

+1

# walks

# walks

R
M

SE
R

M
SE

R
M

SE

-1

reference solution

# walks

increasing
portion of
boundary

is Neumann

Fig. 14. Here we solve for a known reference function, using its normal
derivatives to specify Neumann conditions on an increasingly large part of
the boundary. WoSt exhibits the expected Monte Carlo convergence rate,
whereas the estimator based on multiple ray intersections from Section 4.4.1
quickly blows up.

Figure 19 (lizard)Figure 1 (toast) Figure 5 (lungs)

time (secs) time (secs) time (secs)

R
M

SE

Fig. 15. WoSt exhibits the expected rate of convergence for a Monte Carlo
estimator, shown here for eight fixed points on each example from Sec-
tion 6.5. Reference solutions are also computed via WoSt with 2

16 walks
per point, as there is no analytical solution and no feasible alternatives to
compute it. Timings were taken on an 8 core M1 MacBook Pro.

6.1 Stopping Tolerances
Like WoS, WoSt terminates walks in an �-shell �Ω�

�
around the

Dirichlet boundary, yielding a small, controllable amount of bias.

The performance-bias tradeoff is also relatively insensitive to the

parameter �. See Binder and Braverman [2012] and Sawhney and

Crane [2020, Section 6.1] for more detailed analysis and experiments.

The minimum radius parameter �min
from Section 4.4.3 also in-

curs bias near concave parts of �Ω� . Figure 13 examines the ef-

fect of this parameter—compared to �, �min
typically exhibits a

more sensitive performance-bias tradeoff, but with run-time im-

provements again outweighing the small increase in bias. In all

other experiments we scale models to fit in a unit sphere, and use

� = �min = 0.001. Adaptively picking �min
based on local boundary

curvature may yield even better performance/lower bias.
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Fig. 16. For an equal number of walks, WoSt is significantly more efficient
than both WoS with discretized boundary reflections (Section 3.4.2), as well
as SDE-based estimators (Section 2). Timings were taken on an 8 core M1
MacBook Pro.

6.2 Convergence
As with most Monte Carlo estimators, WoSt exhibits error of mag-

nitude about � (1/
√
� ) with respect to the number of walks �

(Figure 14), suggesting that any bias has little impact on overall

accuracy. In general we observe that variance tends to be higher

(but still predictable) in regions dominated by Neumann boundaries,

due to longer walk lengths.

6.3 Comparisons

Fig. 17. SDE schemes project
walks that leave the domain
to the boundary, where the
walk continues as usual.

WoSt is both significantly faster and

less biased than previous Monte

Carlo approaches for solving mixed

boundary-value problems with com-

parable parameter settings. For in-

stance, Figure 16 compares several

methods using comparable parame-

ters: a minimum star radius �min =
0.001 for WoSt, reflection offset � =
0.01 for WoS, and step size � =
0.0001 for the SDE-based method.

As discussed inSection 3.4.2, WoS with boundary reflections suffers

from bias buildup due to long walks that stick to the Neumann

boundary. Methods based on reflecting SDEs perform even worse

[Costantini et al. 1998] (see inset), as they incur bias not only on

the boundary, but also in the interior. The naïve estimator from

Section 4.4.1, which selects one intersection at random, also exhibits

massive error as we increase the size of the Neumann boundary

(Figure 14, center right). In contrast to all these methods, the star-

shaped regions used by WoSt enable one to take large steps without

incurring significant bias.

[0,5) steps [5,10) steps [10,15) steps

[0,50) steps [50,100) steps [100,150) steps

Contributions are near constant a�er many steps

Neumann

[0,15) steps

[0,150) steps [0,50) steps[0,50) steps [50,100) steps[0,150) steps[0,150) steps [0,50) steps[0,150) steps

-1 +1

Fig. 18. The solution to a Poisson equation with pure Neumann conditions
is uniquely defined up to an additive constant. Top: Local details in the PDE
solution are often resolved by the first few steps of a WoSt random walk,
with near-constant contributions from latter steps. Bottom: More steps are
typically needed to resolve lower frequency global details.

Tikhonov
regularization

25 unbiased steps
follow

ed byTikhono v
regularization

Neumann

reference
solution

-1.5 +1.5

average steps: 1890
σ = 0.1

average steps: 189
σ = 1

average steps: 19
σ = 10

Fig. 19. Top: For pure Neumann problems, a small Tikhonov parameter �
yields long walks and high variance, while larger � values produce shorter
walks with less noise but more bias. Bottom: Since the solution is often
well-resolved by short walks (Figure 18), we apply regularization only to
walks longer than a given length—yielding both less noise and bias.

6.4 Pure Neumann Problems
The solution to a Poisson equation with pure Neumann conditions

is determined only up to an additive constant. When we solve such

a PDE with WoSt, we observe that high frequency details in the

PDE solution are often resolved by the first few steps of a random

walk, while the contribution from later steps is closer to constant

(Figure 18). As discussed in Section 3.4.2, we use Tikhonov regular-

ization to more effectively handle such problems—Figure 19 shows

that this approach provides estimates with less noise and smaller

bias even with substantial regularization, while ensuring that walk

length is not unbounded. In general the number of steps needed to

resolve the solution is problem-dependent—more steps are typically

needed when the solution has low-frequency global features.
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boundary conditions

Fig. 20. Like Monte Carlo ray tracing, WoSt enables flexible modeling of scenarios that are geometrically and physically complex. Center: here an ectotherm
(anolis carolinensis) warms itself on a rock, which in turn is heated by the sun. Left: LikeWoS, WoSt can mix and match different geometric representations—here,
a polygon mesh and a signed distance function. In this case, it is also easily combined with ray tracing used to determine Dirichlet boundary conditions
for the heat transfer problem. Right: Unlike FEM and BEM, WoSt can handle highly-detailed boundary conditions without needing to resolve them on a
mesh—here the lizard’s texture controls the rate of heat absorption via Neumann boundary conditions, yielding stronger warming along the dark stripes.

6.5 Geometric Scaling and Flexibility
As noted in Section 1, a key motivation for developing grid-free

Monte Carlo methods is to push simulation methods closer to the

geometric complexity seen in photorealistic rendering—and in na-

ture. To stress-test WoSt on complex geometry, we mock up three

simulation examples here. Importantly, these examples do not aim

to model exact physics or make quantitative predictions—we seek

only to examine solver performance in the presence of (i) extremely

complex geometry and (ii) large Neumann boundary regions, which

are ubiquitous in real physical problems.

Heat transfer is a central topic in thermal engineering, with three

basic modes: radiation, conduction, and convection. Thermal ra-

diation is well-captured by 1st-order Monte Carlo light transport

simulation, whereas conduction and convection involve diffusion,

which must be simulated via a 2nd-order method like WoS or WoSt

[Bati et al. 2023]. Thermal convection can also include turbulent

advection à la Navier-Stokes, which can be solved via WoS [Rioux-

Lavoie et al. 2022] but is not considered here.

Inspired by toast-darkening experiments ofMyhrvold andMigoya

[2017], Figure 1 models heat transfer from a toaster to a piece of

bread, represented by a CT scan with 3.9 million boundary elements.

To model diffusive convection, we solve a Laplace equation with

large and small Dirichlet values on the heating elements and toaster

cavity (resp.), and Neumann conditions on the bread. The solution

is evaluated at roughly 2 million boundary points, using 1 walk

per point for fast preview and 256 walks for the final solution; on

average, WoSt takes 0.166milliseconds per point for each walk (Fig-

ure 15 plots error versus time). A simple phenomenological model is

used to translate surface temperature into color (though more prin-

cipled models of Malliard browning could be used here [Chen et al.

2019]). We observe a marked difference between the temperature

distribution resulting from radiation and convection—emphasizing

the necessity of 2nd-order models for accurate thermal predictions.

Figure 20 shows another heat transfer experiment, where Dirich-

let conditions induced by solar radiation are used to determine heat

absorbed by an ectothermic lizard, modeled via detailed spatially-

varying Neumann inflow conditions. Unlike FEM or BEM, where

boundary data must be evaluated ahead of time, Dirichlet data is

evaluated on demand via sphere tracing [Hart 1996]. Scene geom-

etry is represented by a 1.2 million element boundary mesh (for

the lizard) and implicit signed distance functions (for the rocks),

highlighting the ability of WoSt to work with mixed boundary rep-

resentations without global meshing. The solution is evaluated at

285k boundary points using 1024 walks per point, taking on aver-

age 0.121milliseconds per point for each walk. As in Monte Carlo

rendering (and unlike FEM/BEM), scene setup required no model

conversion or meshing—even though data was pulled directly from

the internet.

Finally, Figure 5 models oxygen diffusion in the lungs, one of

many Laplacian transport phenomena with mixed boundary con-

ditions [Grebenkov 2006]. We make a simplification by using Neu-

mann rather than Robin boundary conditions (which are an impor-

tant topic for future work—see Section 7). While FEM can solve

such problems,meshing is both a major performance bottleneck and

a hindrance for end-to-end robustness. In this case, even a state-

of-the-art method [Hu et al. 2020] yields badly broken geometry;

tweaking parameters to capture the correct geometry incurs a full

day of compute time, eliminating any advantage of a fast solve.

With WoSt we get feedback reliably and immediately in an output-

sensitive fashion, here restricted to a cross section. In particular, we

evaluate the solution on a 512× 512 grid using 1024 walks per point;

WoSt takes on average 0.021milliseconds per point for each walk.
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reflecting
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origin
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(average steps: 214)
(average bounces: 219)

WoSt
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Fig. 21. Unidirectional randomwalkmethods such asWoSt and path tracing
require many steps or bounces to make their way through a key hole.

7 LIMITATIONS AND FUTURE WORK
The principal benefit ofWoSt is not simply that it can solve Neumann

problems, but rather that it exhibits a speed-bias tradeoff closer to

the original WoS algorithm for Dirichlet problems, i.e., it provides
large steps and low-variance estimates away from the Dirichlet

boundary—especially compared to SDE, WoS, or WoB approaches to

the Neumann problem (Sections 2 and 6.3). However, Neumann and

mixed boundary problems remain fundamentally more challenging

than pure Dirichlet problems, with many opportunities for future

extension and improvement.

Next-Event, Path-Space, and Bidirectional Estimators. For Neumann-

dominated problems, forward random walk estimators must take

many steps before obtaining a Dirichlet contribution, resulting in

high computation time without a commensurate decrease in vari-

ance. This situation directly parallels forward rendering algorithms

that produce long light paths in scenes with predominantly non-

absorbing materials. For instance, Figure 21 replicates a classic “key-

hole problem” using both 2D path tracing (assuming perfectly dif-

fuse reflections) and WoSt (with Neumann-dominated boundary).

In both cases, average walk length is greater than 200, highlighting

a general challenge faced by unidirectional Monte Carlo methods.

In rendering, next-event estimation helps by adding a direct illumi-

nation contribution at each bounce [Whitted 1980; Cook et al. 1984].

One could likewise try adding a Dirichlet contribution at each step

of WoSt, by allowing subdomains to contain part of the Dirichlet

boundary. Such a scheme would simply need some way to estimate

��/�� at Dirichlet points (Equation 17).

More generally, a path-space formulation [Pharr et al. 2016, Section
14.4.4] of the BIE may lead to estimators that make more global

sampling decisions (e.g., via Markov chain Monte Carlo [Veach

and Guibas 1997; Kelemen et al. 2002]) or bidirectional estimators

that help connect difficult-to-sample boundary and source data to

arbitrary evaluation points [Lafortune and Willems 1993; Veach and

Guibas 1995a]. The bidirectional WoS method of Qi et al. [2022]

provides a concrete starting point—along with a rich literature from

Monte Carlo rendering [Veach and Guibas 1997; Vorba and Křivánek

2016; Müller et al. 2017; Herholz et al. 2019; Müller et al. 2019, 2020].

Geometric Queries. The dominant cost in WoSt is evaluating geo-

metric queries (Section 5). While ray- and closest-point queries are

already well-optimized [Intel 2013; Wald et al. 2019; Krayer and

Müller 2021], closest silhouette point queries could be further ac-

celerated via, e.g., better tree construction [Estevez and Kulla 2018,

Section 4.4] or intelligent caching of silhouette edges. One might

also extend silhouette queries to (neural) implicit surfaces by build-

ing on recent range analysis techniques [Sharp and Jacobson 2022].

Likewise, Neumann point sampling queries could be optimized à la
many-light sampling [Estevez and Kulla 2018, Section 5.4], ensuring

that Neumann boundary samples lie in star-shaped regions.

Concave Neumann Boundaries. To take larger steps near silhouette
points, we could replace the fixed parameter �min

with an adaptive

radius based on local curvature estimates [Pottmann et al. 2007].

Alternatively, one might apply multi-level Monte Carlo [Giles 2015;
Misso et al. 2022] to reduce bias by aggregating estimates obtained

via progressively smaller values of �min
.

Global Information Sharing through Sample Reuse. WoSt estimates

solution values independently at each point, often resulting in highly

redundant computation. In concurrent work [Miller et al. 2023], we

develop a grid-free sample reuse scheme forWoSt inspired by virtual

point light (VPL) methods from rendering [Keller 1997; Dachsbacher

et al. 2014]. This method gives unbiased solution estimates at arbi-

trary points by caching terms of the BIE on the domain boundary,

and may open the door to domain decomposition strategies [Chan

and Mathew 1994] for domains with thin features (Figure 21). Other

reuse schemes from rendering such as photon mapping [Hachisuka

et al. 2008; Hachisuka and Jensen 2009] and ReSTIR [Bitterli et al.

2020; Ouyang et al. 2021] surely provide similar opportunities.

Denoising and Geometric Prefiltering. Since elliptic PDEs have

very regular solutions, high-frequency noise in WoSt estimates is

nicely mitigated via denoising, as noted by Sawhney and Crane

[2020, Figure 13]; here again methods from rendering provide a

wealth of opportunities [Zwicker et al. 2015; Chaitanya et al. 2017;

Schied et al. 2017, 2018; Gharbi et al. 2019; Kozlowski and Cheblokov

2021; NVIDIA 2022, 2017]. Another interesting challenge is how

to detect—or even define—silhouettes for geometry with intricate

microstructures [Neyret 1998], perhaps through some form of geo-

metric prefiltering [Wu et al. 2019]. In particular, the SNCH itself

provides a form of prefiltering: nodes higher than the leaves can

provide conservative or approximate bounds on �
silhouette

that ef-

fectively amount to smoothing out fine-scale geometry (at the cost

of bias). Likewise, SNCH nodes could be built by sampling a dis-

tribution (à la microflake models [Heitz et al. 2015]) rather than

bounding explicit geometry.

Robin Boundary Conditions. In rendering, a room full of non-

absorbing mirrors yields much longer path lengths than a scene

with realistic, partially absorptive materials (Figure 22). Likewise,

perfectly-reflectingNeumann conditions represent an “extreme case”

for grid-free Monte Carlo methods, since materials in real physical

problems are typically reflecting and absorbing. For instance, realis-

tic thermal, electromagnetic, and fluid models often assume Robin
boundary conditions of the form


� (�) +  
�� (�)
���

= �(�) on �Ω, 
,   ∈ R (23)
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Partial Absorption & Reflection Perfect Reflection

Fig. 22. Realistic scenes for visualization and analysis rarely have purely
reflecting surfaces. Left: A rendered scene with both absorbing and reflecting
surfaces. Right: A rendered scene of a room full of perfect mirrors.

[Senior 1960; Gustafson and Abe 1998; Grebenkov 2006; Hahn and

Özisik 2012]. Incorporating such conditions into WoSt would result

in shorter walks and greater efficiency, since (as in rendering) low-

throughput walks could be terminated early via Russian roulette

[Pharr et al. 2016, Section 13.7]. Support for Robin boundary condi-

tions would enable WoSt to solve PDEs with variable coefficients

[Sawhney et al. 2022] and exterior problems [Nabizadeh et al. 2021]

with mixed boundary conditions, since the Girsanov and Kelvin
transformations used by these methods (resp.) convert Neumann

conditions into Robin conditions. Work by [Simonov 2017, Section

1] provides one possible starting point.

Extension to Other PDEs. Though we have developed WoSt in

the context of (screened) Poisson equations, we believe the basic

algorithmic strategy applies more broadly: fundamentally, the WoSt

algorithm depends on the structure of the BIE, and BIE formula-

tions are readily available for a variety of other PDEs, including

the Helmholtz equation [Hunter and Pullan 2001, Chapter 3], linear

elasticity [Hunter and Pullan 2001, Chapter 4] and the biharmonic

equation [Ingham and Kelmanson 2012]. Stochastic integral for-

mulations are also known for Navier-Stokes [Busnello et al. 2005;

Rioux-Lavoie et al. 2022].

Even within the class of PDEs presented here, geometric scal-

ability will likely pay dividends in well-chosen scientific and en-

gineering contexts—just as it has for Monte Carlo simulation of

light transport. In general, the very different capabilities of grid-

free Monte Carlo methods are still largely unexplored in geometric,

visual, and scientific computing, with many unique benefits and

attractive use cases yet to be discovered.
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A GREEN’S FUNCTIONS AND POISSON KERNELS
Here we provide expressions for Green’s functions and Poisson

kernels in free-space and over a ball in 2D and 3D. Our WoSt estima-

tor uses these functions to solve the Poisson and screened Poisson

equations via their boundary integral formulation.

A.1 Poisson Equation
The free-space Green’s functions in 2D and 3D for two points � and

� equal:

�R
2

(�,�) = log(� )
2�

, �R
3

(�,�) = 1

4��
, (24)

where � � ‖� − � ‖. The corresponding Poisson kernels equal:


R
2

(�,�) =
�� · (� − �)

2��2
, 
R

3

(�,�) =
�� · (� − �)

4��3
, (25)

where �� is the unit normal at �.

For a ball �(�, ­) of radius ­ centered at � , we can derive 2D and

3D Green’s functions from the corresponding free-space expressions

using the method of images [Duffy 2015]. This gives:

��
2D

(�,�) = log(­/� )
2�

, ��
3D

(�,�) = 1

4�

(
1

�
− 1

­

)
. (26)

These functions integrate over the ball �(�, ­) to:

|��
2D

(�) | �
∫
� (�,�)

��
2D

(�,�) d� =
­2

4

, (27)

|��
3D

(�) | �
∫
� (�,�)

��
3D

(�,�) d� =
­2

6

. (28)

The corresponding Poisson kernels are the same as their free-space

counterparts. For any point � ∈ �� where �� = (� − �)/­, they
simplify to:


�
2D

(�,�) = 1

2�­
, 
�

3D
(�,�) = 1

4�­2
. (29)

A.2 Screened Poisson Equation
Let �� and �� (for � = 0, 1, . . .) denote modified Bessel functions of

the first and second kind, resp. The free-space Green’s functions in
2D and 3D for a screened Poisson equation with a positive screening

coefficient � then equal:

��,R2 (�,�) = �0 (�
√
�)

2�
, ��,R3 (�,�) = �−�

√
�

4��
. (30)

The corresponding Poisson kernels are:
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. (34)

For a ball �(�, ­), the 2D and 3D Green’s functions are:

�
�,�
2D

(�,�) = 1

2�

(
�0 (�

√
�) − �0 (�

√
�)�0 (­

√
�)

�0 (­
√
�)

)
, (35)

�
�,�
3D

(�,�) = 1

4�

(
sinh((­ − � )

√
�)

� sinh(­
√
�)

)
. (36)

Their integral over the ball �(�, ­) equals:
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Finally, the corresponding Poisson kernels at any point � ∈ � equal
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R
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(42)

We note that ��,� ∈ [0, 1) for � > 0. Using Equation 39, we in-

troduce a multiplicative weight of ��,�
in the solution estimate at

every step of a WoSt random walk for a screened Poisson equation,

since directions are sampled proportionally to 
R
�
(Section 4.4). As

we mention in Section 3.4.2, the cumulative product of ��,�
can be

used as a Russian roulette probability to terminate walks.

B OPEN DOMAINS AND DOUBLE-SIDED BOUNDARIES
Here we describe how to modify Algorithm 1 to support double-

sided boundary conditions in an open domain Ω ⊂ R� . We start

with the BIE for double-sided boundary conditions [Costabel 1987]:


 (�)� (�)=

boundary∫
�Ω

+(�, �)

[
�+(�)−�−(�)

]
−� (�, �)

[
��+(�)
��+�

− ��−(�)
��−�

]
d�

+

domain∫
Ω
� (�,�) � (�) d� , (43)

where �+ and �− denote unit outward and inward facing normals

on �Ω, resp., �+ and �− represent corresponding solution values on

either side of �Ω, and the kernel 
+(�, �) � �
 (�,�)/��+
� . Since all

points are either on the boundary or the domain interior, 
 = 1/2
on �Ω and 1 otherwise.

The high-level idea is to estimate Equa-

tion 43 by choosing an appropriate set

of boundary conditions to use in a star-

shaped region St(�� , � ) centered at the

current walk location �� , i.e., �+ or �−

as the Dirichlet data when �� ∈ �Ω� ,

and ℎ+ or ℎ− as the Neumann data in St

when �� ∈ �Ω� . The choice of bound-

ary conditions depends on whether the

boundary �Ω is front- or back-facing relative to �� or ��−1 for � > 0

(inset). We assume the boundary �Ω has a canonical orientation de-

fined by the unit outward normal �+� for any point � ∈ �Ω, and that

the walk’s direction of approach towards �Ω equals �� � �� −��−1.
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For � = 0, we require �0 as input to the algorithm to determine the

user-specified choice of boundary conditions to use; for instance,

setting �0 = �+�0 uses �
+
if �0 ∈ �Ω� .

For double-sided Dirichlet boundary conditions, we change line

5 in Algorithm 1 to return �+ when �� · �+
��

> 0 and �− otherwise;

the dot product determines whether the boundary is back-facing

relative to ��−1. Before using hemispherical direction sampling on

�Ω� to determine the next walk location ��+1 (line 13), we flip the

direction of the boundary normal �+�� if �� · �+�� < 0; this ensures

that ��+1 lies on the same side of the boundary as the direction from

which the walk approached �Ω� . Finally, we let ��+1 be a Neumann

sample on �St� for double-sided Neumann conditions. In line 23,

we then use ℎ+ on ��+1 if (��+1 − �� ) · �+��+1 > 0 and ℎ− otherwise

when �� ∉ �Ω� ; the boundary orientation in this case is determined

relative to �� . When �� ∈ �Ω� , we use ℎ+ as the Neumann data on

��+1 if the boundary normal is flipped and ℎ− otherwise.

There is a non-zero probability for a random walk to wander off

to infinity when using WoSt in an open domain or in the exterior of

a closed domain; this corresponds to the non-recurrent behavior of
Brownian motion in 2D and 3D [Borodin and Salminen 2015, Chap-

ter 2]. Nabizadeh et al. [2021] use WoS to solve exterior problems

with pure Dirichlet boundary conditions outside a closed domain by

performing a spherical inversion of the domain. We leave extending

their approach to mixed boundary-value problems to future work.

C WHY NOT ALWAYS USE THE FIRST INTERSECTION

crepuscular
line

At first glance, the discussion in Sec-

tion 4.4.1 prompts a simple idea for

generalizing the technique of Simonov

[2008] and Ermakov and Sipin [2009]

to nonconvex domains (which unfortu-

nately does not work): consider the sub-

domain �(�� , �Dirichlet) ∩Ω, and sample

the next point ��+1 by taking the first in-
tersection with � (�(�� , �Dirichlet) ∩ Ω)
along a ray � from �� , ignoring any later intersections. This is

analogous to choosing a BIE subdomain � ⊂ �(�� , �Dirichlet) ∩ Ω
comprising only points in �(�� , �Dirichlet) ∩ Ω visible to �� . The

boundary of such a subdomain � is made up of two components:

first, the part of � (�(�� , �Dirichlet) ∩ Ω) that is visible to �� ; second,
any crepuscular rays [Gargallo et al. 2007] corresponding to the

visibility silhouette on � (�(�� , �Dirichlet) ∩ Ω) with respect to ��
(see inset).

The second component is the reason why just sampling the first

intersection would produce biased results, as one would never sam-

ple any points on the crepuscular rays. Even if we considered a

modified sampling strategy that allowed for generating points � on

these rays, we would additionally need to estimate the normal deriv-

ative �� (�)/��� of the solution at � as this data is only known on the

Neumann boundary. (An estimate of the solution� (�) is not needed,
as the Poisson kernel is zero on crepuscular rays.) By constrast, we

shrink the subdomain A to �(�� ,min (�
Dirichlet

, �
silhouette

)) ∩ Ω in

Section 4.4.2 so that it does not contain any crepuscular rays—using

just the first intersection then evades the aforementioned problems.

D WHY SAMPLE THE NEUMANN TERM SEPARATELY
We use two separate samples ��+1 and ��+1 to estimate the first

and second terms in Equation 18 corresponding to the unknown

solution value � and known Neumann data ℎ, resp. However, we
could in theory use ��+1 to estimate both boundary terms. To do so,

we would rewrite the WoSt estimator as follows:

�̂ (�� ) �

boundary


�(�� , ��+1) �̂ (��+1)

 (�� ) ��St(�� ,� )(��+1)

− ��(�� , ��+1) ˜ℎ(��+1)

 (�� ) ��St(�� ,� )(��+1)

+

interior

��(�� , ��+1) � (��+1)

 (�� ) �St(�� ,� ) (��+1)

, (44)

where

˜ℎ(��+1) �
{
ℎ(��+1), ��+1 ∈ �St� (�� , � ),
0, ��+1 ∈ �St� (�� , � ).

(45)

In practice, this approach is problematic as the second term in

Equation 44 is biased: the direction sampling procedure in Section 4.4

never samples a point ��+1 on a flat Neumann boundary when

�� ∈ �Ω� , even if ℎ is non-zero there. This is because the Poisson

kernel 
� in Equation 19 (which serves as our sampling density ��St)

is zero for points ��+1 where ���+1 ⊥ (��+1 − �� ). More generally,

even for non-flat boundaries, the ratio

�/��St � 
�/��

in the second

term in Equation 44 results in high-variance estimates as the Poisson

kernel can take on both very large and small values. These issues

motivate our use of a separate sample ��+1 from the probability

density function ��St� (�� ,� )(��+1) (Equation 18), which we generate
using the procedure described in Section 4.5.

E PSEUDOCODE
Here we provide pseudocode for the geometric queries in Section 5.

Algorithm 2 SilhouetteDistanceNeumann(�, �max = ∞)
Input: A query point � ∈ R3 & a radius � around � to search in.

Output: The closest point to � on the visibility silhouette of �Ω� .

1: return DistClosestSilhouette(snch.root, �, �max)

Algorithm 3 DistClosestSilhouette(�, �, �, �min

�
= 0)

Input: A spatialized normal cone hierarchy� , a query point � ∈ R3,
a radius � around � to search in, and optionally the minimum

distance to � ’s AABB from � (0 if � is inside AABB).

Output: Distance from � to closest point on visibility silhouette.

1: if �min

�
> � then return � ⊲Ignore nodes outside search radius

2: if � .isLeaf then
3: ⊲Return distance to closest silhouette edge in leaf node

4: for � in � .edges do
5: �
 ← ClosestPointOnEdge(�, �)
6: � ← �
 − �

7: �
 ← |� |
8: if �
 < � then
9: hasTri0, �0 ← GetAdjacentTriangleNormal(�, 0)
10: hasTri1, �1 ← GetAdjacentTriangleNormal(�, 1)
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11: isSilhouetteEdge ← not hasTri0 | | not hasTri1 | |
12: (� · �0) · (� · �1) ≤ 0

13: if isSilhouetteEdge then return �


14: else
15: ⊲Intersect AABBs with sphere formed by � and �

16: �, ­ ← � .left,� .right
17: visit	, �

min

	
← IntersectAABBSphere(�.aabb, �, � )

18: visit�, �
min

�
← IntersectAABBSphere(­.aabb, �, � )

19: ⊲Cull nodes with only front- or back-facing triangles

20: if visit	 and �min

	
> 0 then

21: visit	 ← HasSilhouette(�.aabb, �.cone, �) ⊲Alg. 4
22: if visit� and �min

�
> 0 then

23: visit� ← HasSilhouette(­.aabb, ­.cone, �) ⊲Alg. 4
24: if visit	 and visit� then
25: if �min

	
< �min

�
then ⊲Traverse closer subtree first

26: � ← DistClosestSilhouette(�, �, �, �min

	
)

27: return DistClosestSilhouette(­, �, �, �min

�
)

28: else
29: � ← DistClosestSilhouette(­, �, �, �min

�
)

30: return DistClosestSilhouette(�, �, �, �min

	
)

31: else if visit	 then
32: return DistClosestSilhouette(�, �, �, �min

	
)

33: else if visit� then
34: return DistClosestSilhouette(­, �, �, �min

�
)

35: return �

Algorithm 4 HasSilhouette(aabb, conenormal, �)
Input: An AABB aabb, a conenormal encoding normal information

for the triangles in aabb, and a query point � .

Output: Conservative guess of whether aabb contains a silhouette

with respect to � , achieved by checking if the normal and view

cones associated with the AABB contain orthogonal directions.

1: ⊲aabbmay contain silhouette if conenormal’s half angle is ≥ 90
◦

2: �nc ← conenormal .axis
3: 	nc ← conenormal .halfAngle
4: if 	nc ≥ �/2 then return true

5: ⊲Set view cone axis from � to aabb’s center
6: �vc ← Centroid(aabb) − �

7: �vc ← |�vc |
8: �vc ← �vc / �vc ⊲View cone axis
9: ⊲aabbmay contain silhouette if�vc is⊥ to directions in conenormal

10: � ← ArcCos(�nc · �vc) ⊲Angle between normal & view axes
11: if �/2 ≥ � − 	nc and �/2 ≤ � + 	nc then return true

12: ⊲Compute view cone half angle w.r.t. aabb’s bounding sphere

13: � ← BoundingSphereRadius(aabb)
14: if �vc ≤ � then return true ⊲invalid cone, sphere contains �
15: 	vc ← ArcSin(� / �vc) ⊲View cone half angle
16: ⊲aabb may contain silhouette if cones contain ⊥ directions

17: 	sum ← 	nc + 	vc
18: if 	sum ≥ �/2 then return true

19: return �/2 ≥ � − 	sum and �/2 ≤ � + 	sum

Algorithm 5 NeumannBoundarySample(�, � )
Input: A sphere with center � ∈ R3 and radius � .

Output: A point � ∈ �Ω� if the sphere is nonempty, the unit

outward normal �� and the probability pdf� . The sample is not

guaranteed to lie inside the sphere, but is likely to be near � .

1: ⊲Sample a random triangle inside or intersectingwith the sphere

2: � ← null

3: pdf� ← 0

4: SampleTriangleInSphere(snch.root, �, �, �, pdf� )
5: if � not null then
6: ⊲Sample a random point � on the triangle �

7: �, �� , pdf� ← SamplePointOnTriangle(�)
8: return �, �� , pdf� · pdf�
9: return null, null, 0

Algorithm 6 SampleTriangleInSphere(�, �, �, �, pdf� , pdf� = 1)
Input: A binary tree� , a sphere with center � ∈ R3 and radius � , a

triangle � yet to be selected and its sampling pdf� . The optional
argument computes pdf� of traversing a random branch in T.

Output: A randomly selected triangle � in the sphere & its sampling

pdf� ; no triangle is selected if the sphere does not intersect �Ω� .

1: if � .isLeaf then
2: ⊲Select a random triangle proportionally to its area

3: totalArea ← 0

4: for �� in � .triangles do
5: if IntersectTriangleSphere(�� , �, � ) then
6: totalArea ← totalArea + Area(�� )
7: if Rand() · totalArea < Area(�� ) then
8: � ← ��
9: pdf� ← pdf� · Area(�)
10: if totalArea > 0 then pdf� ← pdf� / totalArea
11: else
12: ⊲Select subtree to traverse weighted by its proximity to �

13: � ← � .left
14: ­ ← � .right
15: weight	 ← IntersectAABBSphere(�.aabb, �, � ) ?
16: �R

3 (�, Centroid(�.aabb)) : 0

17: weight� ← IntersectAABBSphere(­.aabb, �, � ) ?
18: �R

3 (�, Centroid(­.aabb)) : 0

19: totalWeight ← weight	 + weight�
20: if totalWeight > 0 then
21: prob	 ← weight	 / totalWeight
22: if Rand() < prob	 then
23: pdf	 ← pdf� · prob	
24: SampleTriangleInSphere(�, �, �, �, pdf� , pdf	)
25: else
26: pdf� ← pdf� · (1 − prob	)
27: SampleTriangleInSphere(­, �, �, �, pdf� , pdf�)
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