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Abstract

Numerical computing on complex geometry faces two core challenges: repre-
senting geometry and performing computation on it. Discretization—voxels, meshes,
global solves—remains effective until geometry becomes too detailed or uncertain
to resolve. To overcome these limitations, this thesis will develop a complementary
paradigm—stochastic geometry primitives (SGPs)—that use randomness to avoid
discretization in both representation and computation.

SGPs build on two foundations already established in graphics. Monte Carlo
rendering provides an algorithmic primitive that interacts with geometry only
through local queries, while participating-media models serve as distributional
representations that replace explicit particle interactions with free-flight sampling.
Building on these principles, we generalize Monte Carlo partial differential equation
(PDE) solvers to handle a wider range of boundary conditions, and we develop
stochastic representations of solid geometry that naturally interface with rendering
algorithms.

These methods are positioned as general-purpose primitives: black-box opera-
tors for physics simulation (elliptic and transport PDEs), geometric computation
(harmonic coordinates, distance-driven queries, shape optimization), and machine
learning (differentiable PDE layers or stochastic supervision of neural PDE surro-
gates). In this view, SGPs provide a common interface in place of meshes and global
solves, allowing the same primitives to serve simulation, geometry processing, and
learning.

To extend this framework further, we propose new work to address current
limitations of SGPs. One direction is the treatment of nonlinear PDEs using hybrid
neural-Monte Carlo methods, where iterative solves refine neural surrogates under
Monte Carlo supervision. Another is a principled, point-based representation of
stochastic solid geometry, which can be interpreted as a stochastic form of fast wind-
ing numbers. These contributions advance SGPs as general-purpose and efficient
building blocks for geometric computing on complex and uncertain domains.



Chapter 1

Introduction

Numerical computing with complex geometry faces two core challenges: accurately representing
geometry and efficiently performing computations on it. Traditional geometric computing has
long relied on discretized domains, such as voxel grids or volumetric meshes, for tasks like
reconstructing surface geometry [42] or solving partial differential equations (PDEs) [19]. While
effective, these discretization-based approaches become computationally demanding or even
fail when dealing with complex or uncertain geometries. To address these limitations, this
thesis will introduce a new paradigm for geometric computing-stochastic geometry primitives
(SGPs)—which leverages randomness to avoid discretization in both geometric representation
and computation.

SGPs serve as building blocks for modeling and simulation that encompass two complemen-
tary dimensions.

* Stochastic algorithms for geometry recast geometric and physical quantities as (re-
cursive) integral expressions, which are estimated via Monte Carlo sampling. Unlike
discretization-based approaches such as radiosity or the finite element method (FEM),
stochastic algorithms do not require accounting for all global relationships simultaneously
through a mesh or system solve. Instead, they interact with geometry only through local
queries (e.g. ray intersections, closest points), forming high-dimensional samples that
stochastically encode global relationships.

*+ Stochastic representations of geometry describe geometry in a distributional sense
rather than by resolving it explicitly through a mesh or grid. This provides a principled way
to handle both extreme geometric complexity—beyond what can be feasibly resolved—and
uncertainty arising from limited measurements or incomplete knowledge. Alongside these
representations, we develop stochastic analogues of standard geometric queries (e.g. ray
intersections, closest points), extending the query-based interface for geometry to the
distributional setting.

Besides being important on their own for different graphics or engineering pipelines, these two
components can also be combined to achieve algorithms capable of unprecedented scale and
efficiency.

Much of the inspiration for these primitives comes from the success of stochastic algorithms

and representations in computer graphics. Specifically, Monte Carlo rendering algorithms [40, 84]



demonstrate how stochasticity can enable computation on massive, detailed scenes by limiting
geometric interactions to local ray intersection queries with logarithmic complexity. Graphics
has also incorporated stochasticity to geometric representations in the form of volumetric
models [41, 43, 65] for such smoke, clouds, and tissue which replace explicit particle-level detail
with a distributional description. These stochastic models of geometry have made it possible to
simulate light transport in settings that would otherwise be computationally intractable, and
have even extended their influence beyond graphics to fields such as remote sensing [9, 71] and
lidar-based imaging [36, 66]. Despite this success, existing stochastic primitives remain narrowly
applicable—algorithmically to light transport and representationally to particle-based models.
This thesis aims to extend the power of stochasticity beyond its traditional role in graphics and
rendering, developing SGPs as a unified framework for geometric computing.

Our prior work has already begun to lay the foundation for more general purpose SGPs.
On the algorithmic side, our work generalizes Monte Carlo PDE solvers to a broader range
of boundary conditions [75, 55] and develops differential variants [54] for tasks like shape
reconstruction and optimization-driven design. Complementing this, our work also introduces
stochastic models of solid geometry [53, 6] that move beyond microparticle formulations to
capture uncertainty and complexity in real world scenes. Our work even combines these
primitives; applying inverse rendering to stochastic opaque solids for surface reconstruction [53]
and extending Monte Carlo PDE solvers to stochastic microparticle geometry [56]. These
applications are natural extensions of our work, made possible by the stochastic queries (e.g.,
ray intersections, closest points) developed alongside our representations, which allow them to
serve as drop-in replacements for explicit geometry within existing algorithms.

Building on these foundations, we propose two directions to further generalize SGPs:

* Algorithmic generalization. Current stochastic PDE solvers primarily support linear
elliptic PDEs or transport problems. We propose extending them to more challenging
regimes—nonlinear and hyperbolic PDEs—by developing hybrid neural-Monte Carlo
techniques.

* Representational generalization. Current point cloud representations of stochastic
solid geometry simplify evaluation by assuming pointwise independence. We propose a
more expressive class of point-cloud implicit surface models, which account for spatial
correlations in queries. These models lead to more expressive stochastic solid geometry,
while preserving query efficiency.

We begin by reviewing SGPs as they appear in graphics today (Chapter 2), using light transport
as a model problem in geometric computing. This review covers both algorithmic aspects
(e.g., Monte Carlo rendering section 2.3) and representational aspects (e.g., participating media
section 2.4). We then summarize our own contributions, which lie in advancing Monte Carlo
PDE solving algorithms (Chapter 3) and in simultaneously developing stochastic geometric
representations that move beyond microparticle models (Chapter 4). Finally, we outline our
proposed directions (Chapter 5) for jointly extending algorithms and representations, and
conclude with a roadmap (section 5.3) for completing the thesis.



Chapter 2

Background

This chapter surveys the foundations of geometric computing for light transport, which serve as
the starting point for SGPs. Over the past two decades, Monte Carlo rendering algorithms have
transformed computer graphics by enabling efficient, robust simulation of light transport on
massive, extremely detailed scene geometry. In parallel, stochastic representations of geometry
have expanded light transport simulation to include simulation with participating media such
as clouds and biological tissue. These advances have driven a Monte Carlo renaissance in
rendering and visualization, with widespread adoption in applications ranging from visual
effects to scientific computing.

Our aim here is not to review light transport for its own sake, but to use it as a case study in
how stochastic methods overcome the limits of classical approaches. We organize the discussion
around three perspectives:

* Discretization-based methods. The radiosity method, introduced by Goral et al. [24],
illustrates how the light transport problem can be discretized into a system of equations.
This approach highlights both the appeal of discretization and its limitations when facing
geometric complexity.

* Monte Carlo rendering. Rendering and related algorithms, pioneered by Kajiya [40]
and Veach [84], overcome these limitations by replacing discretization with stochastic
sampling. These methods scale naturally with complexity and provide the key algorithmic
insights that we later generalize in our Monte Carlo PDE framework.

* Participating Media. In cases where even explicit geometry becomes intractable, dis-
tributional models provide a natural means of abstraction. Such representations make
it possible to apply Monte Carlo algorithms to microparticle systems, like clouds or tis-
sue [43, 65] and introduce a distributional view of geometry that we’ll later extend beyond
microparticles to more general geometric structures such as solids.

These three perspectives—discretization, Monte Carlo rendering, and participating media—
anchor our background discussion. They also foreshadow the more general computational
framework developed in later chapters, where we extend these ideas beyond rendering (chapter 3)
and participating media (chapter 4).
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2.1 Light transport

Light transport is governed by a first-order linear PDE that captures how radiance propagates in
free space and interacts with surface geometry. The central quantity, radiance L(x, &), measures
radiant flux per unit projected area per unit solid angle (refer to Chapter 4 of Pharr et al. [67]).
In a spatial domain Q C R?, radiance satisfies the following PDE,

@&+ VL(x,0) =0, x € Q, (2.1)
L(x,®) = Le(x, ®) + Lg(x, ), x € 0Q, n(x) - > 0.

where L. is emitted radiance, L is the in-scattered radiance, and 7(x) is the outward surface
normal. The in-scattered term is

Ly(x.5) = /S 8.8 (i) - &) L(x.~) i 2.2)

where f is the bidirectional scattering distribution function (BSDF). This term couples outgoing
radiance to incident radiance at a boundary point. A convenient way to represent incident
radiance on the boundary is with an integral equation,

L(x,&) = Le(x, &) + /aQ f(x,0,xy) Gx, y) V(x,y) L(y, yx) dy, (2.3)

Here xy is the unit vector from x to y, V(x, y) is a binary visibility function with respect to the
geometry 9Q, and G(x, y) is a geometry term,

(ii(x) - xy) (Ai(y) - yx)
ly — x|I2 ’

G(x,y) = (2.4)
Equation (2.3) is radiosity [24], since it directly couples outgoing radiance to other boundary
points. Inside the domain and on the boundary, incident radiance can be expressed recursively
as

L(x,&) = L(r)’:a, —5), (2.5)

where ¥ . is the first intersection point along direction @. The integral form highlights the core
computational difficulty of light transport: every surface point is coupled to every other surface
point. Both discretization-based algorithms such as radiosity [24] and stochastic algorithms
such as rendering [40] can be viewed as strategies for resolving these global couplings to obtain
a solution to the PDE (2.1).

2.2 Discretization-based methods for light transport

The integral formulation of radiance (2.3) reveals that radiance at one surface point depends
on contributions from all other surface points, modulated by geometry and visibility terms.
Radiosity [24], the canonical discretization-based approach, attempts to explicitly encode these
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spatial relationships to compute the radiance at every point on the boundary. It makes two
simplifying assumptions.

First, all surfaces are assumed to be perfectly diffuse reflectors and emitters. Under this
assumption, the outgoing radiance is direction-independent:

L(x,®) = L(x), o e S2 (2.6)

Second, the boundary is discretized into a solution mesh of N non-overlapping elements 9Q2 ~
f\il e; with e;Ne; = @ for i # j, and radiance is approximated by a constant L; on each element.

Under these assumptions, the radiance integral (2.3) reduces to the surface balance equations,

L; :LEi+ZFij L] (27)

Here F;; are known as the form factors which encode the spatial relationships—geometric
coupling and visibility—between boundary elements (refer to Goral et al. [24]). In matrix form,
this is

L=L.+FL = L=(-F)"'L (2.8)

where L € RN and F € RV*N, The radiosity system (2.7) appears deceptively simple: it collapses
the light transport PDE into a linear system that can be directly solved. In practice, however,
its accuracy depends on the choice of discretization. Each boundary element in the solution
mesh must have nearly constant visibility with respect to all others—a requirement rarely met
in complex scenes since the binary visibility function V(x, y) introduces sharp discontinuities.
Adaptive refinement around these discontinuities can reduce error [46, 26, 14], but detecting
and meshing visibility discontinuities is itself a globally defined and difficult problem.

These challenges are not unique to radiosity, but characteristic of discretization-based
methods more broadly: one must either uniformly refine the solution mesh, which quickly runs
into computational limits, or attempt adaptive refinement, which can be as difficult as solving
the original PDE.

2.3 Stochastic methods for light transport

The previous section shows how discretization encodes global coupling of light transport
explicitly through form-factor matrices. This approach is naturally tied to the boundary integral
formulation of radiance (2.3), which expresses outgoing radiance at one surface point as an
integral over all other boundary points and is the foundation of radiosity [24].

Stochastic methods take a different route. Monte Carlo rendering [40, 84] can be formulated in
terms of boundary area integrals, but it is often easier to understand through the hemispherical
integral (2.2), which sits closer to the PDE form (2.1). From this perspective, constructing
an estimator is straightforward: we sample a direction, trace a ray, and evaluate radiance
recursively at the first surface hit. In what follows we develop this estimator and discuss some
of its advantages.
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By starting from the hemispherical integral (2.2), we can express the outgoing radiance at a
boundary point x € 9Q in terms of incident radiance from all directions,

L(x,®) = Le(x, &) + flx,0,8") (n(x) - &) L(x,-&") d&’. (2.9)
SiHx)

The key idea of rendering is to directly sample this integral with a single-sample Monte Carlo
estimator,

(L(x,@)) = Le(3, @) + 27f (x, &, @) (ii(x) - &) L(x, —&'), & ~ U(SE(x)). (2.10)

where ¢’ is sampled uniformly over the hemisphere and (-) denotes an unbiased Monte Carlo
estimator. The only unknown in this estimator is the incident radiance L(x, —&’) from direction &,
which we evaluate recursively by finding the first intersection r;,z), along aray r, g (t) = x +td’.
Substituting this relation makes the estimator recursive,

(L(x,3)) = Le(x, &) + 27f (x, &, &) ((x) - &' <L(r;g),, —(7))> & ~USx).  (211)

To ensure that this estimator converges, we additionally apply Russian roulette which proba-
bilistically terminates recursion while reweighing to avoid bias. At each step, we evaluate the
recursive term with probability g

r —&3’)> if¢é <gq

(L(x,8)) = Le(x, &) + f(x,8,&) ((x) - &) {3 <L ( %" £~ U0,1]
0

otherwise
(2.12)

Convergence of this estimator is guaranteed for physically plausible BSDFs, just as in radiosity
where this same condition ensures the inverse (I — F) ™! exists.

The resulting recursive estimator (2.12) provides an algorithm for computing radiance
anywhere in the scene. For boundary points x € 9Q it is applied directly, while for interior
points x € Q we evaluate by first tracing a ray r, ; to the corresponding boundary point r;,a

(L(x,3)) = <L(r;"’5), —5)> (2.13)

where we can recursively evaluating the outgoing radiance with equation (2.12). In both cases,
the estimator will be noisy and so multiple samples are averaged to reduce variance.

Notice that the rendering algorithm interacts with geometry only through ray-intersection
queries used for propagating to the next step in the recursive evaluation. Unlike constructing
a form-factor matrix, these queries are local, efficient with O(logn) complexity with respect
to the number of elements n, and scalable when supported by acceleration structures [64, 87].
This minimal interface also enables efficient handling of implicitly defined surfaces, where prior
work has already developed fast ray—intersection methods [25, 20, 77].

In addition to avoiding mesh construction, rendering is also output-sensitive: radiance is
computed only at points of interest, such as image pixels. This structural characteristic of
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rendering also means separate evaluation points can be estimated independently, which enables
trivial parallelization that maps well to modern hardware like GPUs [68, 35, 67].

The cost of these benefits is variance: rendering produces noisy estimates. This variance can
be reduced by averaging more samples or leveraging specialized strategies, such as importance
sampling [85, 86], caching [89, 38], and denoising [15, 62]. In practice, these techniques shift
the variance—complexity tradeoff making variance far more manageable than the complexity of
adaptive meshing.

These insights point to a broader principle: stochastic algorithms can avoid encoding global
spatial relationships explicitly by interacting with geometry only through local queries. In
the next section we turn to the other axis of SGPs—stochastic representations—which extend
this framework to structures like smoke or sand, where explicit modeling or full simulation is
intractable.

2.4 Stochastic representations for microparticle geometry

Stochastic algorithms like rendering can scale to geometry consisting of billions of elements,
but some geometric structures still remain computationally intractable. Specifically, media
like clouds, smoke, sand, and tissue can consist of quadrillions, or orders of magnitude more,
microscopic particles. For these systems, explicit geometry not only exceeds most practical
memory limitations, but also makes geometric computation prohibitively expensive. Any attempt
at meshing is also futile; the mesh discretization would require more elements than the particles
themselves, which already exceed feasible storage.
A useful way to see the difficulty is to imagine the explicit surface

N
0= U B(c,R), 9Q=0(R*\0), (2.14)
i=1
where B(c;, R) is a ball of radius R centered at ¢;. Materializing this union is hopeless when N is
massive: the only way forward is to model aggregate behavior. In computer graphics, stochastic
microparticle models—known as participating media—capture the aggregate behavior of particle
ensembles such as clouds or smoke. A canonical example is the Poisson—Boolean model (PBM),
which describes the spatial distribution of particles.
Under a standard PBM, particles are independent, identically shaped, and isotropic, with
centers distributed according to a (possibly spatially varying) rate parameter A : R* — R,

O ~ PBM(A) (2.15)

Inside any measurable subset S ¢ R? and conditioned on the number of particles N(S), the
centers are i.i.d. proportional to the rate A,
(number of microparticles) N(S) ~ Poisson(A(S)), (2.16)

i)

(position of microparticles) Pr[ci=x | N(S), ¢c; € S] = AG)’

A(S) = /S/l(x) dx.
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Since 9Q is no longer explicitly constructed, geometric queries are resolved stochastically
according to the underlying stochastic model. For ray—intersection queries, this means sampling
from the free-flight distribution, i.e., the distribution of the first intersection distance along a ray.
In the case of the PBM, the free-flight distribution is exponential [44]

Pga(t) = 0(res(1)) eXP(—/O o(res(s)) dS)- (2.17)

Following computer graphics convention, the product of the rate parameter A(x) and particle
radius R represents the extinction coefficient o(x) = A(x) 7R?.

The expected radiance under the PBM is obtained by averaging over the distance to the first
intersection, yielding a conservation law along rays that is analogous to the deterministic case,

(deterministic) L(x,-®) = L(r; 2 —cf)), (2.18)
(stochastic) Eo[L(x,-®)] :/ pfa(t)Eo [L(rea(t),-3) | t] dt, (2.19)
o ,

This relationship can be substituted for the recursive radiance term in equation (2.12) and
(2.13) to define an estimator for expected radiance over stochastic geometry. For rendering, the
conditioning can be ignored without introducing much bias. The resulting recursive sampling
procedure is similar to the deterministic case: sample a direction, draw a free-flight distance,
and evaluate outgoing radiance at the intersection.

This formulation makes clear that stochastic geometry and stochastic algorithms are nat-
ural complements. Because such algorithms depend only on local queries, extending them to
stochastic geometry amounts to replacing deterministic outputs with sampled ones. This simple
substitution is powerful: it is precisely what enables volume rendering in participating media
such as clouds, where explicitly representing microparticle geometry is intractable.

Within volume rendering, researchers have already explored variations in microparticle distri-
butions [4, 37, 17] and structures [34, 27], but two promising opportunities have remained largely
overlooked. The first is applying stochastic geometry within alternative algorithms beyond ren-
dering. The second is developing new stochastic geometry models beyond microparticles—such
as stochastic solids that can capture uncertainty for surface reconstruction. We develop both of
these directions in later chapters.



Chapter 3

Stochastic algorithms

So far we have seen that rendering algorithms are crucial to solving the light transport PDE (2.1)
on complex or even stochastic geometry. As rendering algorithms have matured, they have
enabled light transport simulation to handle geometric complexity at scales far beyond what is
practical in most other areas of geometric computing [10, 18]. This naturally raises the question:
why can’t analogous techniques be developed for more general PDEs?

PDEs form one of the broadest classes of problems in geometric computing. They underlie
almost every physical simulation and many geometric tasks without a physical basis. PDEs
directly model implicit surfaces [42], enable blending weights for object deformations [31],
drive mesh operations such as smoothing [13], and support artistic applications like inflating
2D shapes [39]. In some cases, PDEs act as geometry-aware convolution operators in learning
architectures [5, 78]. Given how many applications rest upon existing PDE solvers, developing
general Monte Carlo methods for solving PDEs may enable many geometric computing applica-
tions to achieve the geometric flexibility and robustness that discretization-based methods like
the finite element methods (FEM) often lack. While Monte Carlo solvers will likely never fully
supplant these discretization-based methods—and nor should they when geometry is modest
enough—the gap between what rendering achieves and what discretization methods currently
handle motivates the search for stochastic counterparts.

In this chapter we build on this motivation. We begin by reviewing walk on spheres [57],
a Monte Carlo PDE solver from the 1950s that was only recently introduced to computer
graphics [73]. This method illustrates how Monte Carlo approaches extend beyond light transport
to more general classes of PDEs. Our core contribution is to generalize walk on spheres to
Neumann [75] and Robin [55] boundary conditions, enabling a wider range of modeling and
simulation problems. We also develop extensions to differentiable solvers [54] and to stochastic
geometry [56], such as participating media. These advances position Monte Carlo PDE solvers
as SGPs—simple, modular, and scalable building blocks for geometric computing.

3.1 Prior work: walk on spheres for the Laplace equation

The Laplace equation is one of the most fundamental PDEs in both geometry and physics.
Throughout this chapter, we focus on the case without screening coefficients or source terms,

10
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[Sawhney and Crane 2020]

Figure 3.1: Figures from Sawhney and Crane [73]. (Left) Walk on spheres samples the next point
on the largest empty sphere of the current point until reaching the boundary. (Right) A Poisson
equation is solved on a complex CT scan of an insect using walk on spheres.

though the methods we discuss naturally extend to these variants. With Dirichlet boundary con-
ditions, the Laplace equation can be interpreted as smoothly interpolating g from the boundary
0Q to the interior of the domain Q:

Au(x) =0 x €Q (3.1)
u(x) = g(x) x € 9Q,

where Q c RY is the domain, 9Q its boundary, u the unknown solution, and ¢ the boundary
data. The Laplace operator is defined as

d

pu(x) =) Fulx) (3.2)

2
= ox;

which intuitively measures the deviation of u at x from the average of its neighbors. This
relatively simple PDE underlies a broad range of applications from thermal conduction to
harmonic coordinates.

In the 1950s, Muller [57] introduced the walk on spheres algorithm as a Monte Carlo solver
for the Laplace problem. The key idea is that harmonic functions—solutions u satisfying Au = 0—
admit a mean value property:

u(x) = u(y) dy, (3.3)

|aB (X, rx) | IB(x,rx)

where r, := mingesqo||lg — x|| is the distance to the nearest boundary point. This representation
holds whenever u is harmonic throughout the ball B(x, r,). Walk on spheres directly estimates
this mean value integral using a single-sample Monte Carlo estimator:

(u(x)) = (u(y)), y~ U[B(x,rx)]. (3.4)
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The recursion terminates once a walk enters an e-neighborhood of the boundary, where the
solution u is approximated with the Dirichlet boundary condition g at the closest boundary
point 7 (x) = argmin,,q llg — x||. The final estimator for u accounts for this e-shell termination

g(m(x)) ifry<e

(u(x)) = { y ~ U[oB(x,ry)]. (3.5)

(u(y)) otherwise

Walk on spheres interacts with geometry only through closest-point queries, which are local
and highly scalable [72]. As a result, the method scales gracefully to complex geometry, much
like rendering algorithms.

Recently, Sawhney and Crane [73] introduced this method to computer graphics, motivating
follow-up work that generalizes walk on spheres to a broader range of governing equations [74,
70]. These works highlight that walk on spheres inherits many of the same benefits as rendering
algorithms, including geometric scalability, flexibility to different geometric representations,
output sensitivity, and trivial parallelization.

With today’s ever-increasing geometric complexity, these strengths make walk on spheres
especially appealing. At the same time, several obstacles still limit its practical use:

1. walk on spheres is restricted to Dirichlet boundary conditions,
2. extending to more general PDEs (e.g. nonlinear) remains challenging, and
3. its role as a subroutine is underdeveloped compared to FEM solvers.

The contributions of this thesis directly address these limitations. We generalize walk on spheres
to Neumann [75] and Robin [55] boundary conditions, broadening its applicability. We also
propose hybrid neural-Monte Carlo methods that use the algorithm as a subroutine, which in
turn open a pathway toward tackling more general PDEs. Finally, we explore extensions to
differential [54] and volumetric solvers [56], moving walk on spheres closer to feature parity
with rendering algorithms and positioning it as a practical, modular algorithmic primitive.

3.2 General boundary conditions via walk on stars

Walk on spheres only supports Dirichlet boundary conditions, but most real systems require more
general boundary conditions. While Dirichlet specifies solution values, Neumann conditions
constrain normal derivatives—for instance, an insulated wall enforces zero heat flux, or an
impermeable boundary enforces normal velocity. Many problems combine both types, with
parts of the boundary prescribing values and others prescribing derivatives. Extending walk
on spheres to such mixed conditions is therefore essential. Our walk on stars method [75, 55]
addresses this need as a direct generalization of walk on spheres to Neumann and Robin boundary
conditions, while preserving the performance characteristics of the original method.

We focus here on the homogeneous case, though the walk on stars method naturally extends
to non-homogeneous variants including non-zero Neumann boundary conditions. For the
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6.6 million triangles)

o interior point v.' "
o boundary point .:

e-shell ;
F— Dirichlet

oxygen concentration (mol/L)
t---1 Neumann

mixed reflecting/absorbing

Figure 3.2: (Left) Walk on stars performs a random walk on star-shaped subdomains, reflecting
off Neumann boundaries and terminating at the Dirichlet boundary. (Right) A Laplace PDE with
mixed Dirichlet-Neumann boundary conditions modeling oxygen diffusion is solved on a model
of the lungs using walk on stars.

Laplace equation with mixed Dirichlet-Neumann boundary conditions, a typical setup is

Au(x) =0 xeQ (3.6)

u(x) = g(x) x € dQp (3.7)
a—l_l,(x) =0 x € IQN, (3.8)
on

where the boundary 9Q = 9Qp U 9Qy is partitioned into Dirichlet and Neumann components.
Dirichlet conditions prescribe solution values, while Neumann conditions prescribe normal
derivatives.

To extend beyond pure Dirichlet boundaries, we use a more general mean value relation-
ship [75]. Instead of the largest empty ball with respect to the entire 9Q, we take the intersection
of a ball B(x, s,) with the domain Q. The star-domain radius s, is chosen to be maximally large
while ensuring that the intersected region St(x, s,) = B(x, s,) N Q excludes all of the Dirichlet
boundary 0Qp and is star-shaped. This means every ray centered at x intersects the boundary
dSt(x, sx) at most once, hitting either the Neumann boundary oQy or part of the boundary of
the ball dB(x, sx). On a star-shaped region St(x, sy ), the solution u satisfies a generalized mean
value property,

u(x) = / P(x.y) u(y) dy, (3.9)
ISt(x,55)

where P(x,y) is the Poisson kernel of the Laplace equation defined for a ball.

(n(y) - xy) _ (A(y) - xy)

, = . (3.10)
27|lx — yl| 4rllx - yl|?

PZD(X, y) = P3D(X, y)

Remarkably, shooting a ray in a random direction from the center x of the star-shaped domain
St(x, sx) and intersecting with the boundary 9St(x, sx) produces a point y distributed according



14 CHAPTER 3. STOCHASTIC ALGORITHMS

to P(x,y). In other words, the star-shaped domain is perfectly importance sampled by uniform
direction sampling. This observation yields a direct Monte Carlo estimator:

(u(x)) = ((y)), y~P(x,) onaSt(x,sy). (3.11)

Here the notation emphasizes that the Poisson kernel defines a probability distribution supported
only on the boundary of the star-shaped domain. We refer to this algorithm as walk on stars,
because we recursively evaluate the solution on star-shaped subdomains rather than the sphere
subdomains used in walk on spheres.

Walk on stars is recursive like walk on spheres, yet continues even if y is sampled on the
Neumann boundary dQy. Eventually y is sampled within the e-shell of the Dirichlet boundary
0Qp where the walk terminates

g(r(x)) ifry<e

(u(x)) = { y ~ P(x,-) on aSt(x,sy). (3.12)

(u(y)) otherwise

In the special case where no Neumann boundary is present, the star-shaped region reduces to a
ball, and walk on stars reduces to walk on spheres.

Crucially walk on stars interacts with geometry only through local queries to construct
star-shaped subdomains and therefore scales well with complex geometry. In practice, the
star-domain radius sy is computed as the minimum of two queries: a closest-point query to the
Dirichlet boundary and a closest-visibility silhouette query on the Neumann boundary. The
latter query requires minimal changes to a bounding volume hierarchy (BVH) and retains a
computational complexity O(logn) with respect to the number of boundary elements n. We
describe the full details of this query and its acceleration structures in our work introducing
walk on stars [75].

3.2.1 Extension to Robin boundary conditions

Having extended walk on spheres to Neumann boundaries, we next consider Robin conditions.
Robin conditions are important in practice, since real materials are neither perfectly insulating
(Neumann) nor perfectly absorbing (Dirichlet), but instead a mixture of both behaviors. Robin
conditions naturally capture such realistic boundaries, making them essential in applications
ranging from thermal analysis to fluid flow. Our “walkin’ Robin” modification [55] generalizes
walk on stars to handle Robin boundary conditions with only minor changes to the algorithm.
As before, we focus on the homogeneous case for clarity,

Au(x) =0 xeQ (3.13)
u(x) = g(x) x € 9Qp (3.14)
%(x) —p(x)u(x) =0 x € 9Qp, (3.15)

where 1 > 0 is the Robin coefficient and the boundary 9Q = 9Qp U 9Qp is partitioned into
Dirichlet and Robin components. With Robin boundary conditions, we obtain a modified mean
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radiant flux density

R - Robin coefficients
e interior walk point

o reflected walk point
X terminated walk point
e-shell

Dirichlet (absorbing)
=—=Neumann (reflecting) ™
------ Robin (partially reflecting)

Figure 3.3: (Left) Walk on stars generalized to Robin boundary conditions: the size of star-shaped
subdomains is reduced to bound reflectance, and walks can terminate early via Russian roulette.
(Right) Thermal analysis of the NASA Curiosity Rover on an artist-generated model. Here Robin
boundary conditions correspond to convective heat transfer, modeling thermal conduction on
the rover subject to radiant flux at the boundary.

value relation
u(x) = / pu(y) P(x,y) u(y)dy (3.16)
St (x,5x)

Here the mean value relation includes a reflectance term

G(x,y) .
1-p(y) 5, if x € B(x, sy)
pu(x,y) = { Fey) o (3.17)
1 otherwise
where G(x,y) is the Green’s function for the Laplace equation defined for the ball,
log(r/||x — y|| 1 (1 1
Gup(ey) = B =YD ey = L[ . (3.18)
2 ar\r |lx =yl

Just as before, we form a recursive estimator with direction sampling and introduce an e-shell
on the Dirichlet boundary,

g(r(x)) ifry<e

(u(x)) = pu(x,y) { y ~ P(x,-) on aSt(x,sy). (3.19)

(u(y)) otherwise

The only difference from the original walk on stars is that we accumulate reflectance terms—
similar to an albedo in rendering—with each recursive step. To ensure convergence, we require
the reflectance to be strictly less than one, pl,| < 1. We enforce this by reducing the star-domain
radius to s < sy, chosen so that | pu(x,y)| < 1for all points on the Robin boundary contained in
the star-domain. Because reflectance is a geometric quantity, this safe radius s can be computed
efficiently in logarithmic time using a modified BVH. We describe this query and the data
structure fully in our paper introducing walk on stars with Robin boundary conditions [55].
With reflectance bounded below 1, we can apply Russian roulette with survival probability equal
to reflectance p, which reduces walk length and improves performance.
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The Robin case requires only modest changes to walk on stars: shrinking the star-radius to
control reflectance, and accumulating reflectance weights along the walk. These adjustments
preserve the locality and scalability of the method while extending it to more realistic Robin
boundary conditions. In this way, the same algorithm now accommodates Dirichlet, Neumann,
and Robin conditions within a unified framework.

3.3 Differential walk on spheres

WoS differentiable WoS

econstructed geometry

solution

primary walk differential walk e walk offset e-shell

Figure 3.4: (Left) Differential walk on spheres solves a nested PDE to compute the derivative
of the solution with respect to scene parameters. (Right) An emissive surface is reconstructed
using diffusion profiles observed on a bounding box, via stochastic gradient descent. Unlike
conventional mesh-based approaches we evaluate derivatives on regions of interest without
computing a global solution.

Many modern applications of PDE solvers require differentiable variants. Optimization-driven
design [81, 29], inverse reconstruction [30], and modern learning-based architectures [5, 78] all
depend on computing derivatives of PDE solutions with respect to scene parameters. Formally,
given a solution u(x, ), we define its derivative

ou(x, )

= (3.20)

u(x, ) =
with u the solution of a Laplace equation with parameterized boundary condition g(x, ) and
geometry Q(r)

Au(x,7) =0 x € Q(r) (3.21)
u(x, ) = g(x, ) x € 9Q ().

While Monte Carlo solvers for analogous differential quantities in light transport have already
enabled breakthroughs in design [60] and reconstruction [33], differential variants of walk
on spheres remain underexplored. Our recent work [54] introduces such differential Monte
Carlo solvers, enabling derivatives with respect to both boundary conditions and geometry.
Along with other concurrent efforts [93, 92], this nascent area opens applications ranging from
electrical impedance tomography [7] to thermal design [12].
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To build such a differential solver we first recall an important observation from shape
optimization: the derivative of the primal solution with respect to the parameters satisfies a
corresponding nested PDE [29]

Au(x,m) =0 x € Q(r) (3.22)
ag(x, 1) B ou(x, 1) N ag(x, 1)

n or

w(x,m) = Va(0)| =

x € 9Q(m),

-

on

where the boundary normal velocity describes how boundary positions change along normal

directions with respect to parameters:

ox (1)
or

Vi(x) = i - (3.23)

The insight of our work [54] is that the derivative & can be estimated using the same walk on
spheres algorithm as the primal solution,

Va(x (ag(x;”) - a”(’i’”)) + 99(x.7) ifr, <e
(u(x,m)) = { (%) on on on * . Yy ~U[dB(x,1ry)]. (3.24)

(u(y, 7)) otherwise

The only difference from the primal solver is at the boundary, where we must evaluate the
normal derivative of u. This can be approximated with a one-sided finite difference,

<8u(x, 7r)> _g9(x, 1) = (u(x —en, 7))

pe - (3.25)
which requires an additional primal walk on spheres evaluation just inside the boundary. This
adjoint-based strategy, long used in shape optimization [29], adapts naturally to the Monte Carlo
regime. While we have so far focused on Dirichlet boundary geometry, the framework extends
in principle to more general PDEs and boundary conditions. Such generalizations often require
higher-order boundary derivatives, whose efficient evaluation remain an active area of research.

Building the differential solver on walk on spheres allows it to inherit the forward solver’s
benefits: scalability to complex geometry, compatibility with diverse representations, and output-
sensitive evaluation. These advantages become even more important in optimization, where
alternative discretization-based approaches would require repeated remeshing (explicit surfaces)
or redistancing (implicit surfaces). Moreover, the stochastic nature of Monte Carlo methods
enables noisy but efficient gradient estimates, making stochastic gradient descent feasible for
shape optimization. This stochasticity can help avoid local minima and regularize optimization—
an effect we demonstrate empirically in our work [54].

3.4 Solving PDEs on stochastic geometry

Explicit geometry is not always available or tractable for PDE solvers. In some cases, such as
clouds, sand, or tissue, the boundary consists of quadrillions of microscopic particles whose
exact arrangement cannot practically be represented in explicit form. In others, such as surface
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volumetric Wo$S VWoS — VPT VWoS — VPT
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e-shell microparticle geometry Q
photochemical ozone reaction ’
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Figure 3.5: (Upper Left) Volumetric walk on spheres (VWOS) solves a Laplace PDE on stochastic
microparticle geometry by sampling closest points. (Right, Lower Left) A toy photochemical
system is simulated [49] in a participating medium: incident radiance, simulated with volumetric
path tracing (VPT), drives the production of ozone, which then diffuses outward, simulated with
VWOS. Because the solvers are coupled and interact with the same stochastic microparticle
geometry, they must share conditioning or “memory” across the coupling.

reconstruction from measurements, the geometry itself is uncertain. In both settings it is
natural to replace explicit geometry with a random geometry O that captures either unresolvable
complexity or uncertainty. This idea has roots in stochastic geometry [8], the homogenization
of PDEs in random media [63], and in computer graphics under the study of participating
media [4, 37, 17]. In these settings, the primary goal is to compute or approximate the expected
value of a solution,

i(x) =Eoplu(x)] (3.26)

under each geometry realization O. In our case, the solution u satisfies a PDE such as the Laplace
equationon Q =R\ O

Au(x) =0 x € Q, (3.27)
u(x) = g(x) x € Q.

In the previous chapter we saw how rendering generalizes to these settings through volumetric
approaches: deterministic ray—intersection queries are replaced with free-flight distribution
samples. Our recent work [56] shows that the same strategy applies to walk on spheres, since it
interacts with geometry only through closest-point queries to compute the largest empty sphere.

In particular, our volumetric walk on spheres method computes the mean solution @ (x) for
stochastic microparticle geometry, such as clouds or smoke. We model this geometry with a
PBM O ~ PBM, which is the very same abstraction used in computer graphics to represent
participating media [41]. The key idea, as in volume rendering, is that instead of evaluating a
deterministic closest point, we sample one according to the PBM. This modification requires only
minor changes to the classical algorithm, while largely preserving its structure and performance.
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Formally, under any stochastic geometry O, we can express the mean solution to a Laplace
equation via the expected mean value relation,

i(x) =Ep

/ P(x,y) u(y) dy], (3.28)
IB(x,ry)

where ry, = ||g* — x|| is the distance to the closest boundary point and g* = argmin,,q llg — x||
is the closest boundary point. This expectation can be rewritten by conditioning on the location
of that closest point g*,

u(x) = /R 3px(q) Eo /a B(x’rx)P(x,y)u(y) dy | g =q] dq. (3.29)

Conditioned on the closest-point, everything inside the inner integral is deterministic except for
the unknown solution u(y). Pushing the expectation inside yields

i(x) = / pe(@) P(x.y)a(y | ¢ = 9)dydg. (3.30)
R3 0B(x,ry)

where @(x | -) := E[u(x) | -]. Unlike rendering, the conditioning cannot be ignored without
introducing significant bias. Therefore, we accumulate the conditional events in a set M =
{q’f =q1.95 = q2 - - } and condition the closest-point pdf on this set

acm= [ paim [ pepacimote =aayde 63

We discuss the full details of the conditional closest point sampling for the PBM in our paper [56].
The resulting volumetric walk on spheres algorithm though is identical in structure to standard
walk on spheres, except for the presence of an additional sampling decision and the “memory”
M accumulated with each step

9(x) if lx—gll <e g~px(-|M)

(a(y | MU {q* = q})) otherwise ~ y~ U[B(x,|lx—ql)]. (3.32)

(a(x [ M)) = {

The common theme across all generalizations of walk on spheres is that the algorithmic structure
remains unchanged. As a result, we inherit the benefits and characteristics of the original
algorithm. Additionally, unlike homogenization methods, which only approximate solutions for
stochastic geometry [21], our approach yields an unbiased mean solution without assumptions
on particle size or PBM rate parameters.

As in volume rendering [22], we anticipate that differentiable variants of the algorithm could
be developed for inverse tasks such as estimating medium parameters. In cases where stochastic
geometry reflects uncertainty, these variants could further support scene reconstruction, as
recent volumetric approaches in computer vision demonstrate [52].

In volumetric methods for walk on spheres and rendering, the focus has largely been on
microparticle collections. These models are mathematically convenient and broadly applicable. In
geometric computing, however, we typically reason about solid objects—especially in applications
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like surface reconstruction. In such cases, uncertainty or unresolved complexity is more naturally
expressed through geometric models of solids rather than microparticles. Addressing this
shift requires new stochastic representations—comprising both geometric models and query
mechanisms—that fit naturally within stochastic algorithms. The next chapter develops this
theme, introducing stochastic solids and, more broadly, learnable query distributions as new
forms of stochastic representations.



Chapter 4

Stochastic representations

Representations of geometry—meshes, point clouds, implicit surfaces—are central to geometric
computing. They provide the substrate on which algorithms operate, typically through pointwise
queries such as ray-intersection or closest-point evaluation. Two fundamental challenges arise
in practice: complexity, where the number of geometric elements becomes overwhelming, and
uncertainty, where the geometry is known up to some noise or intrinsically random.

Geometric complexity has long been the province of computer graphics, where stochastic
representations are well established. From extensive models of stochastic microparticle geom-
etry [4, 37, 17, 27, 34] to stochastic surface detail models [95, 28], diverse representations of
stochastic microparticle geometry make it possible to evaluate the aggregate effect of micropar-
ticle ensembles. By contrast, representations of uncertainty in solid geometry have not been
developed to the same extent, at least not in a form usable by stochastic algorithms. Yet these
representations are a natural fit for a broad range of applications including surface reconstruction
in computer vision [11, 83], geometric reasoning in robotics [16], and uncertainty quantification
in engineering design [90, 47].

Our main contribution in this chapter is to develop principled representations for stochastic
opaque solids [53], enabling stochastic algorithms to operate on uncertain solid geometry. While
our focus is on volume rendering and more specifically free-flight distributions—the distribution
of first intersection events along a ray—the same principles in theory extend to other stochastic
algorithms and geometric queries such as closest-point evaluation [44, 56]. Beyond stochastic
opaque solids, we discuss our work on prior-free models for free-flight distributions, which
enable learning representations of scene geometry without specifying a stochastic geometric
model a priori. By casting geometric representations in stochastic terms and interfacing with
them through distributional queries, SGPs enable new forms of geometric computing on both
complex and uncertain geometry.

4.1 Stochastic opaque solids
Volumetric scene representations have long been central to resolving measurement uncertainty
in computer vision [11] and have gained renewed attention with the advent of neural radiance

fields (NeRF) [52]. NeRF demonstrates the power of volumetric models for novel view synthesis

21
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explicit stochastic

microparticle

solid shape

Figure 4.1: (Left) Stochastic opaque solids extend solid geometry with uncertainty, analogous to
how stochastic microparticle models capture geometric complexity. Deterministic queries in the
explicit setting are replaced with distributional equivalents. (Right) We leverage these represen-
tations for surface reconstruction [53], showing that a probabilistic formulation generalizes and
improves upon more heuristic models [91, 88].

by representing scenes as participating media, e.g.stochastic microparticle geometry. Yet most
real-world environments are composed of solid geometry rather than microparticles. If our
goal is not only view synthesis, but also reconstructing surfaces and reasoning about physical
structure, we need representations that enable rendering algorithms to account for uncertainty
in solid geometry:.

Our work develops these representations with the introduction of stochastic opaque solids [53].
Specifically, we model a stochastic solid O in terms of a random indicator function

I:R®— {0,1}, 0= {x eR3 | I(x) = 1}. (4.1)

The indicator specifies whether a point lies inside the solid (I(x) = 1) or outside (I(x) = 0). From
this, we define the occupancy and vacancy fields as the probabilities

o(x) =Pr[I(x) = 1], (4.2)
v(x) =1-o0(x). (4.3)

To simulate light transport on O, we start from the radiance conservation law used for deter-
ministic geometry,

L(x, &) = L(r;@, —cT)). (4.4)

For surface reconstruction applications, this relationship simplifies since we model the outgoing
radiance as purely emissive just as in NeRF,

L(x,&) = L (r;g), -5). (4.5)
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We then take the expectation over the stochastic solid O, which introduces an integral over the
distribution of the first intersection distance,

Eo[L(x,&)] = Eo [Le(r;g), —5))] - /0 ) P () Le(res (1), ~3) dt. (4.6)

Here r, ;(t) = x + t& denotes a point along the ray, and r;(r) = rx@(t;a) is the first intersection

with t;",g) = min{t >0|r.5(t) € O} the first intersection distance. We can then evaluate this
integral using either Monte Carlo integration or quadrature [50, 52]. If the indicator I is a Markov
process along the ray r, 5 (¢) with respect to distance ¢, then we prove in our paper [53] that the
first intersection distance follows an exponential distribution,

_ 16 - Vo(x)]
Coox)

with rate parameter o(x, ©) determined by the vacancy function and its gradient. This form
makes clear that the intersection probability depends on the local vacancy and the alignment of
the ray with the gradient of the vacancy field, i.e. the surface normal. The exponential structure
provides a principled bridge between classic volumetric models and stochastic opaque solids,
and explains why exponential media already mimic uncertain solid surfaces to some degree.

In our paper [53], we generalize this framework in several directions. One extension factors
out the directional term to model a distribution of surface normals. Another extension param-
eterizes the vacancy field with a stochastic implicit surface. These extensions reveal a design
space for stochastic opaque solid geometry, which unifies prior methods such as VolSDF [91]
and NeusS [88] as different choices of underlying implicit surface and normal distributions. This
perspective enables principled modifications—such as Gaussian process implicit surfaces or
spatially varying anisotropy—that improve surface reconstruction.

In follow-up work, we have shown that the formulation is agnostic to the choice of stochastic
implicit surface representation, allowing it to be combined with point-based formulations such
as fast dipole sums [6]. Other subsequent work [76, 94] has introduced new stochastic geometry
models for solids, incorporating correlations between evaluation points or mutually exclusive
interactions with geometry. Building on these directions, in the next section we introduce a
query-centric, prior-free model for the free-flight distribution, enabling scene reconstruction
without assuming a specific stochastic geometry model a priori.

pfa(t) = cr(rx,(;;) exp(_ /t o'(rx,(; (s)) ds), o(x,d) (4.7)
' 0

4.2 Scenes as free-flight distributions

A recurring theme of this proposal is that stochastic algorithms interface with geometry—whether
deterministic or stochastic—only through queries. From this perspective, the role of a stochastic
geometric model is mainly to parameterize a query such as the free-flight distribution. However,
this reliance can be limiting: it forces us to select a stochastic model for a scene a priori, and
more critically, it often complicates evaluation. Computing the free-flight distribution typically
requires integrating a rate parameter along a ray. This process can be slow, and it introduces
sensitivity to sampling that leads to inaccuracies.



24 CHAPTER 4. STOCHASTIC REPRESENTATIONS

For surfaces, this manifests as missed thin structures or failure to capture the sharp peaks in
the free-flight distribution where surface interactions occur. But if all we require is the query
itself, why not learn it directly? Instead of prescribing a stochastic model, we can predict a
parameterized free-flight distribution that serves as a universal approximator (up to the number
of parameters) and is integration-free by design. This is the central idea of free-flight distribution
networks (FreD).

First, we describe a parameterized model of transmittance which by construction ensures valid
transmittance functions and whose negated derivatives produce analytic free-flight distributions.
Let a, b € R be scalar, signed-distances on any oriented line [ with respect to the line origin o; =
argmin,||q||. We define transmittance as the product of elementary transmittance functions,

N
Tiab) = | |17 b) (48)
i=1

So long as each elementary transmittance function is reciprocal Tl(i) (a,b) = Tl(i) (b, a), monoton-
ically decreasing, and restricted to the range [0, 1] then so too will T; satisfy these properties.
To enable analytic evaluation and adherence to the transmittance properties, we choose the
elementary transmittance functions to be soft, step functions,

1,"(a,b) = 1 - a;(®(max(a,b) | s, 07) — D(min (a b) | s ) (49)

where ®(- | y;, 0;) is the CDF of a location-scale distribution, such as a Gaussian, with mean
Ui € R and variance o; € R;. An additional scale «; weighs the contribution of each primitives.
Since each elementary transmittance acts as a step function, the product transmittance is a
universal approximation of transmittance for sufficiently many elementary terms. For such a
transmittance representation, the corresponding free-flight distribution is also a closed-form
expression,

(@) N
oT "’ (a,b)
ff _ 1 _
Py ===y

i=1

[ |77 (@ b)} aip(b | i 07) (4.10)
i#]
where the free-flight defines the distribution of distance |b — a| to the first intersection along [
in direction sign(b — a). Given this parameterized free-flight distribution with 3N parameters,
i = {ai, i, 07} and 7w = {m;} Y, all that remains is to predict these parameters for any given line
[ in the scene. To do so, we bound the line [ using a scene radius [—R, R] and then,

1. looks up M uniformly spaced, D dimensional features along the ray from a background

feature volume such as dense voxel grid or hash-grid [58],

2. divide the ray up into equally spaced intervals with A—I\’} features per interval,

3. and pass ordered features into a network in both the forward and backward order to
predict parameters for two elementary transmittance functions per interval.
Since the free-flight distribution is insensitive to the order in which the primitives are indexed,
the final step ensures order invariance for features.
FreD differs from prior ray query models that bypass integration [80, 1, 48]. Instead of
predicting a single ray query, FreD predicts scene structure along an entire chord [ using
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uniformly spaced features. This yields stable training and reciprocity in transmittance by
construction rather than through regularization. Although FreD still samples modestly (e.g., 128
points per ray), evaluation remains integration-free: no up-sampling or quadrature is needed.
Because primitives are learned continuously along the chord, these fixed samples offer much
higher effective precision than a coarse NeRF, especially for surface geometry where stochastic
solid models [88, 91, 61, 53] require heavy up-sampling to capture concentrated regions in the
free-flight distribution.

Since this project is in its final stages, we present it as existing work and note its anticipated
completion date in Section 5.3.



Chapter 5

Proposed work

We propose advances on two complementary fronts: stochastic algorithms, extending Monte
Carlo PDE solvers into general-purpose iterative methods, and stochastic representations, devel-
oping stochastic implicit surfaces based on the Gaussian Free Field.

Monte Carlo PDE solvers are general, but so far confined to direct estimation. We pro-
pose extending them into iterative hybrid solvers—combining walk on spheres with neural
components—to tackle nonlinear and coupled PDEs in complex geometry.

Additionally, we introduce a stochastic implicit surface representation based on the Gaussian
Free Field, whose mean recovers the winding number and whose covariance can be evaluated
efficiently via Barnes—Hut acceleration, yielding a principled and scalable model for surface
geometry in simulation and inverse problems.

5.1 Iterative hybrid solvers for more general PDEs

We introduce WoS-Net, a general framework for solving nonlinear PDEs by embedding walk
on spheres inside an iterative fixed-point solver. Our starting point is the nonlinear Dirichlet
problem

Au(x) + F(u(x)) = f(x) x€Q (5.1)
u(x) = g(x) x € 0Q,

We observe that the inverse of the Laplacian can be realized stochastically via walk on spheres,

N
ATF(x) ~ glen) + | Gl y) £ (y))- (52)
i=1

and so we can naturally apply this inverse to form a Picard iteration of equation (5.1),

ug = A7 (f — F(ug—1)), (5.3)

where for brevity we drop spatial arguments of the functions. We can also generalize to more
stable operator-splitting schemes such as Douglas—Rachford [23], where we alternate between

26
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pointwise nonlinear inversions and spatial linear inversions,

o = [T+ yF1™ (e - f) (5.4)
e = [A = y] Moy, (5.5)

enabling accelerated convergence.

Rather than store solutions on a grid, we realize these updates by supervising a neural
surrogate u(x, 0) against the stochastic inverse. We plan to use an update procedure similar to
Mehta et al. [51]’s neural level-set evolution, where a stochastic target is computed and network
parameters are guided toward it via gradient descent rather than an exact update.

Compared to prior neural walk on spheres methods [45, 59], we are not using walk on
spheres as a direct solver but rather to facilitate iterative solves. Some prior works have also
explored the use of walk on spheres in the context of operator splitting [70, 32, 82], they usually
do so in a time-stepping regime where relatively denoised, global solves are required to ensure
a stable step. In the steady state regime, our expectation is that iterative solvers may be more
localized and even noisier, so long as step sizes are adjusted accordingly.

Finally, while this may superficially resemble PINNs [69], there are a few key differences.
First, we avoid higher order gradients by leveraging the stochastic inverse of the Laplacian.
Unlike conventional PINNs, we also stop the gradient through F(u), so updates occur only
across iterations—yielding a true iterative solver driven by Monte Carlo supervision. We also
don’t have to explicitly enforce a boundary loss since it’s captured naturally by the stochastic
inversion which enables better handling of complex geometry.

In pursuing this project, our goal is to demonstrate that we can retain the capabilities of walk
on spheres that make it appealing—scalability to extremely complex geometry—while finally
demonstrating PDEs that go beyond the standard linear elliptic regime. Towards this end, we’ll
also explore practical improvements throughout this project as needed including anything from
PDE-aware feature representations to effective sample reuse.

5.2 Stochastic fast winding numbers

We propose a stochastic extension of the winding number, yielding a principled distribution
over implicit surfaces that retains its efficiency while exposing both a mean and covariance
query. We define a random field u : R* — R as a Gaussian process [79]

"~ gso(o, G&(x, y)), (5.6)

Here, G2 is the free-space regularized Green’s function of the Laplacian [3] on domain Q. The
use of the regularized Green’s kernel has a similar effect as in Chen et al. [6] where it helps to
avoid strong singularities that create artifacts. For now, consider Q = R? for simplicity where
the Green’s function is known in closed form,

erf (IIx-yll/e)

G¥ (x,y) =
e 00 = =yl

(5.7)
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Conditioning this field on a point cloud P = {p; 7i;, ;}~, yields a distribution over harmonic
implicit surfaces whose mean surface is the generalized winding number,

N
EBlu(x) | P] = > aiP2(x, pyiip). (538)
i=1
Here P9(x, p, i) = i - V2 (x, p) is the regularized free-space Poisson kernel of the Laplacian,
VE(x,y) = %S(nx—pu/e) (5.9)
x —

with S(t) = erf(t) — % exp(—t?). Since u is a Gaussian process, we can also evaluate the
covariance with a similar summation

N
Cov(u(x),u(y) | P) = GE(xy) = ), &Vl (xpi) - VE(y pi) (5.10)
i=1
This perspective generalizes fast winding numbers [2] into a stochastic fast winding number
(SFWN), where covariance evaluation remains efficient: the sums in (5.10) admit the same
Barnes-Hut-style fast summation used for winding number evaluation. Moreover, SFWN can
condition on domains other than free space by substituting the appropriate regularized Green’s
function G in the summation. The Green’s function for a domain satisfies a Poisson equation
and so it can be evaluated efficiently with walk on spheres.

Finally, Seyb et al. [76] introduce volume rendering algorithms for Gaussian process implicit
surfaces (GPIS). Because SFWN is itself a GPIS, these rendering algorithms apply directly. Beyond
volume rendering, Seyb et al. [76] also suggest that such techniques may extend to walk on
spheres, analogous to our approach with stochastic microparticle geometry in Section 3.4,
provided a stochastic closest-point query can be developed for the GPIS. We will explore these
extensions as part of this project, demonstrating that SFWN enables scalable, robust rendering
and simulation on stochastic surface representations.

5.3 Timeline

We are in the process of completing two projects, “Scenes as Free-Flight Distributions” and
“Stochastic Fast Winding Number,” which we expect to finish by November 2025 and January
2026, respectively. In parallel, we will begin work on the WoS-Net project, with the goal of
completing it around May 2026. Dissertation writing will begin in early summer, with the
defense planned for late summer. An overview is provided below.

* September 2025 — Propose thesis.

+ November 2025 — Submit “Scenes as Free-Flight Distributions” (e.g. FreD) to CVPR.

+ January 2026 — Submit “Stochastic Fast Winding Number” to SIGGRAPH.

+ May 2026 — Complete “WoS-Net” and submit to TBD venue.

* June 2026 — Begin dissertation writing.

*+ August 2026 — Complete dissertation and defend thesis.
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